The field of molecular spintronics exploits the properties of organic molecules possessing a magnetic moment, either native in the form of radicals or induced by the insertion of transition metal magnetic ions. To realize logic or storage molecular spin-tronics devices, molecules with stable different magnetic states should be deposited on a substrate, and switching between the states controllably achieved. By means of a first-principles calculations, we have devised a functional molecule exhibiting different magnetic states upon structural changes induced by current injection. We investigate the prototypical case of non-planar M-Phthalocyanine (MPc), where M is a transition-metal ion belonging to the 4d and 5d series. We find that for ZrPc and HfPc deposited on a graphene decorated Ni(111) substrate, two different structural conformations could be stabilized, for which the molecules attain different magnetic states depending on the position of the M ion - whether above the Pc or between the Pc and the substrate -, acting therefore as molecular magnetic button. Our work indicates an intuitive way to engineer a magnetic molecular switch with tailored properties, starting from the knowledge of the basic atomic properties of elements and surfaces.

Designing a molecular magnetic button based on 4d and 5d transition-metal phthalocyanines

Bellini V
2017

Abstract

The field of molecular spintronics exploits the properties of organic molecules possessing a magnetic moment, either native in the form of radicals or induced by the insertion of transition metal magnetic ions. To realize logic or storage molecular spin-tronics devices, molecules with stable different magnetic states should be deposited on a substrate, and switching between the states controllably achieved. By means of a first-principles calculations, we have devised a functional molecule exhibiting different magnetic states upon structural changes induced by current injection. We investigate the prototypical case of non-planar M-Phthalocyanine (MPc), where M is a transition-metal ion belonging to the 4d and 5d series. We find that for ZrPc and HfPc deposited on a graphene decorated Ni(111) substrate, two different structural conformations could be stabilized, for which the molecules attain different magnetic states depending on the position of the M ion - whether above the Pc or between the Pc and the substrate -, acting therefore as molecular magnetic button. Our work indicates an intuitive way to engineer a magnetic molecular switch with tailored properties, starting from the knowledge of the basic atomic properties of elements and surfaces.
2017
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact