In a past and recent time, the Western Ionian Sea and surrounding regions of south Calabria and eastern Sicily (southern Italy) have been the site of destructive earthquakes (e.g. 1908, Mw 7.2; 1783, Mw 6.9; 1693, Mw 7.4; 1169, Mw 6.6; 362, Mw 6.6), which caused damage, devastation, and death (more than 80,000 deaths in 1908) and were followed by strong tsunamis. Although such events have been studied by many authors, their sources and generation mechanisms are still heavily debated both for earthquakes and tsunamis. The faults that generated such earthquakes are not yet known as it is unknown whether the associated tsunamis were generated directly by earthquakes or indirectly by seismically-triggered landslides. The lack of an adequate network of seismic stations at the bottom of the Ionian Sea and of a continuous acquisition of geophysical and geochemical parameters on the medium and long term prevents the full understanding of the tectonic, seismological, and geomorphologic phenomena of the Western Ionian Sea. A seismological and geochemical experiment, also accompanied by a detailed bathymetric survey, is now ongoing in the Ionian Sea from May 2017. Eight Ocean Bottom Seismometers and Hydrophones (OBS/H) and two modules for geochemical monitoring (CH4, CO2 and O) were deployed on the sea bottom (www.seismofaults.it). They will record seismological and geochemical signals for a period of about 12 months with the aim to: a) determine whether faults are seismically active and can be sources of possible seismic hazard; b) observe eventual premonitory elements, such degassing processes from structures such as mud volcanoes, characterizing the seismic movements along faults; c) determine whether instability phenomena (e.g. landslides) along the Sicilian-Calabrian margins can be triggered by low magnitude earthquakes, and thus to better evaluate the tsunamigenic potential of the western Ionian region. The analyses of the new seismological and geochemical data, combined with data previously collected in the same area, will contribute to deepen the understanding of the tectonic and volcanic activities of the Ionian Sea, permitting to focus on the geodynamic picture of eastern Sicily offshore area.
Investigation of active faults in the Ionian Sea through seismological, geochemical and bathymetric data: the SEISMOFAULTS project
Billi A;Alessandro Bosman;Ligi M;Martorelli E;Petracchini L;Scrocca D;Serracino M;Conti A;Ruggiero L;
2017
Abstract
In a past and recent time, the Western Ionian Sea and surrounding regions of south Calabria and eastern Sicily (southern Italy) have been the site of destructive earthquakes (e.g. 1908, Mw 7.2; 1783, Mw 6.9; 1693, Mw 7.4; 1169, Mw 6.6; 362, Mw 6.6), which caused damage, devastation, and death (more than 80,000 deaths in 1908) and were followed by strong tsunamis. Although such events have been studied by many authors, their sources and generation mechanisms are still heavily debated both for earthquakes and tsunamis. The faults that generated such earthquakes are not yet known as it is unknown whether the associated tsunamis were generated directly by earthquakes or indirectly by seismically-triggered landslides. The lack of an adequate network of seismic stations at the bottom of the Ionian Sea and of a continuous acquisition of geophysical and geochemical parameters on the medium and long term prevents the full understanding of the tectonic, seismological, and geomorphologic phenomena of the Western Ionian Sea. A seismological and geochemical experiment, also accompanied by a detailed bathymetric survey, is now ongoing in the Ionian Sea from May 2017. Eight Ocean Bottom Seismometers and Hydrophones (OBS/H) and two modules for geochemical monitoring (CH4, CO2 and O) were deployed on the sea bottom (www.seismofaults.it). They will record seismological and geochemical signals for a period of about 12 months with the aim to: a) determine whether faults are seismically active and can be sources of possible seismic hazard; b) observe eventual premonitory elements, such degassing processes from structures such as mud volcanoes, characterizing the seismic movements along faults; c) determine whether instability phenomena (e.g. landslides) along the Sicilian-Calabrian margins can be triggered by low magnitude earthquakes, and thus to better evaluate the tsunamigenic potential of the western Ionian region. The analyses of the new seismological and geochemical data, combined with data previously collected in the same area, will contribute to deepen the understanding of the tectonic and volcanic activities of the Ionian Sea, permitting to focus on the geodynamic picture of eastern Sicily offshore area.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.