Forbidden transitions between energy levels typically involve violation of selection rules imposed by symmetry and/or conservation laws. A nanomagnet tunneling between up and down states violates angular momentum conservation because of broken rotational symmetry. Here we report observations of highly forbidden transitions between spin states in a Ni4 single-molecule magnet in which a single photon can induce the spin to change by several times â. nearly reversing the direction of the spin. These observations are understood as tunneling-assisted transitions that lift the standard ?m=±1 selection rule for single-photon transitions. These transitions are observed at low applied fields, where tunneling is dominated by the molecule's intrinsic anisotropy and the field acts as a perturbation. Such transitions can be exploited to create macroscopic superposition states that are not typically accessible through single-photon ?m=±1 transitions.

Observation of Tunneling-Assisted Highly Forbidden Single-Photon Transitions in a Ni4 Single-Molecule Magnet

Troiani F;
2016

Abstract

Forbidden transitions between energy levels typically involve violation of selection rules imposed by symmetry and/or conservation laws. A nanomagnet tunneling between up and down states violates angular momentum conservation because of broken rotational symmetry. Here we report observations of highly forbidden transitions between spin states in a Ni4 single-molecule magnet in which a single photon can induce the spin to change by several times â. nearly reversing the direction of the spin. These observations are understood as tunneling-assisted transitions that lift the standard ?m=±1 selection rule for single-photon transitions. These transitions are observed at low applied fields, where tunneling is dominated by the molecule's intrinsic anisotropy and the field acts as a perturbation. Such transitions can be exploited to create macroscopic superposition states that are not typically accessible through single-photon ?m=±1 transitions.
2016
Istituto Nanoscienze - NANO
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact