This paper presents a heuristic algorithm for solving RCPSP/max, the resource constrained project scheduling problem with generalized precedence relations. The algorithm relies, at its core, on a constraint satisfaction problem solving (CSP) search procedure, which generates a consistent set of activity start times by incrementally removing resource conflicts from an otherwise temporally feasible solution. Key to the effectiveness of the CSP search procedure is its heuristic strategy for conflict selection. A conflict sampling method biased toward selection of minimal conflict sets that involve activities with higher-capacity requests is introduced, and coupled with a non-deterministic choice heuristic to guide the base conflict resolution process. This CSP search is then embedded within a larger iterative-sampling search framework to broaden search space coverage and promote solution optimization. The efficacy of the overall heuristic algorithm is demonstrated empirically on a large set of previously studied RCPSP/max benchmark problems.

A constraint-based method for project scheduling with time windows

Cesta A;Oddi A;
2002

Abstract

This paper presents a heuristic algorithm for solving RCPSP/max, the resource constrained project scheduling problem with generalized precedence relations. The algorithm relies, at its core, on a constraint satisfaction problem solving (CSP) search procedure, which generates a consistent set of activity start times by incrementally removing resource conflicts from an otherwise temporally feasible solution. Key to the effectiveness of the CSP search procedure is its heuristic strategy for conflict selection. A conflict sampling method biased toward selection of minimal conflict sets that involve activities with higher-capacity requests is introduced, and coupled with a non-deterministic choice heuristic to guide the base conflict resolution process. This CSP search is then embedded within a larger iterative-sampling search framework to broaden search space coverage and promote solution optimization. The efficacy of the overall heuristic algorithm is demonstrated empirically on a large set of previously studied RCPSP/max benchmark problems.
2002
Istituto di Scienze e Tecnologie della Cognizione - ISTC
constraint-based scheduling
procedence constraint posting
project scheduling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact