The concept of super-resolution refers to various methods for improving the angular resolution of an optical imaging system beyond the classical diffraction limit. Although several techniques to narrow the central lobe of the illumination Point Spread Function have been developed in optical microscopy, most of these methods cannot be implemented on astronomical telescopes. A possible exception is represented by the variable transmittance filters, also known as "Toraldo Pupils" (TPs) since they were introduced for the first time by G. Toraldo di Francia in 1952[22]. In the microwave range, the first successful laboratory test of TPs was performed in 2003[14]. These first results suggested that TPs could represent a viable approach to achieve superresolution in Radio Astronomy. We have therefore started a project devoted to a more exhaustive analysis of TPs, in order to assess their potential usefulness to achieve super-resolution on a radio telescope, as well as to determine their drawbacks. In the present work we report on the results of extensive microwave measurements, using TPs with different geometrical shapes, which confirm the correctness of the first experiments in 2003. We have also extended the original investigation to carry out full-wave electromagnetic numerical simulations and also to perform planar scanning of the near-field and transform the results into the far-field.

Laboratory measurements of super-resolving Toraldo pupils for radio astronomical applications

Daniela Mugnai;Lorenzo Stefani
2017

Abstract

The concept of super-resolution refers to various methods for improving the angular resolution of an optical imaging system beyond the classical diffraction limit. Although several techniques to narrow the central lobe of the illumination Point Spread Function have been developed in optical microscopy, most of these methods cannot be implemented on astronomical telescopes. A possible exception is represented by the variable transmittance filters, also known as "Toraldo Pupils" (TPs) since they were introduced for the first time by G. Toraldo di Francia in 1952[22]. In the microwave range, the first successful laboratory test of TPs was performed in 2003[14]. These first results suggested that TPs could represent a viable approach to achieve superresolution in Radio Astronomy. We have therefore started a project devoted to a more exhaustive analysis of TPs, in order to assess their potential usefulness to achieve super-resolution on a radio telescope, as well as to determine their drawbacks. In the present work we report on the results of extensive microwave measurements, using TPs with different geometrical shapes, which confirm the correctness of the first experiments in 2003. We have also extended the original investigation to carry out full-wave electromagnetic numerical simulations and also to perform planar scanning of the near-field and transform the results into the far-field.
2017
Istituto di Fisica Applicata - IFAC
radio astronomy
super resolution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact