The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated for the first time a 10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature < 500 °C. We suggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work.
The Cotoncello Shear Zone (Elba Island, Italy): The deep root of a fossil oceanic detachment fault in the Ligurian ophiolites
Langone A
2017
Abstract
The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated for the first time a 10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature < 500 °C. We suggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.