Low-to-medium temperature fluid reservoirs hosted in carbonate rocks are some of the most promising and unknown geothermal systems. Western Sicily is considered a key exploration area. This paper illustrate a multidisciplinary and integrated review of the existing geological, geochemical and geophysical data, mainly acquired during oil and gas explorations since the 1950s, specifically re-analyzed for geothermal purposes, has led to understanding the western Sicily geothermal system as a whole, and to reconstructing the modalities and particular features of the deep fluid circulation within the regional reservoir. The data review suggests the presence of wide groundwater flow systems in the reservoir beneath impervious cap rocks. We identified the main recharge areas, reconstructed the temperature distribution at depth, recognized zones of convective geothermal flow, and depicted the main geothermal fluid flow paths within the reservoir. We believe that our reconstruction of geothermal fluid circulation is an example of the general behavior of low-to-medium enthalpy geothermal systems hosted in carbonate units on a regional scale. Due to the recent technological developments of binary plants, these systems have become more profitable, not only for geothermal direct uses but also for power production.
Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review
Montanari D;Minissale A;Doveri M;Gola G;Trumpy E;Santilano A;Manzella A
2017
Abstract
Low-to-medium temperature fluid reservoirs hosted in carbonate rocks are some of the most promising and unknown geothermal systems. Western Sicily is considered a key exploration area. This paper illustrate a multidisciplinary and integrated review of the existing geological, geochemical and geophysical data, mainly acquired during oil and gas explorations since the 1950s, specifically re-analyzed for geothermal purposes, has led to understanding the western Sicily geothermal system as a whole, and to reconstructing the modalities and particular features of the deep fluid circulation within the regional reservoir. The data review suggests the presence of wide groundwater flow systems in the reservoir beneath impervious cap rocks. We identified the main recharge areas, reconstructed the temperature distribution at depth, recognized zones of convective geothermal flow, and depicted the main geothermal fluid flow paths within the reservoir. We believe that our reconstruction of geothermal fluid circulation is an example of the general behavior of low-to-medium enthalpy geothermal systems hosted in carbonate units on a regional scale. Due to the recent technological developments of binary plants, these systems have become more profitable, not only for geothermal direct uses but also for power production.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.