It is shown that the h-adaptive mixed finite element method for the discretization of eigenvalue clusters of the Laplace operator produces optimal convergence rates in terms of nonlinear approximation classes. The results are valid for the typical mixed spaces of Raviart-Thomas or Brezzi-Douglas- Marini type with arbitrary fixed polynomial degree in two and three space dimensions.

Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form

D Boffi;L Gastaldi
2017

Abstract

It is shown that the h-adaptive mixed finite element method for the discretization of eigenvalue clusters of the Laplace operator produces optimal convergence rates in terms of nonlinear approximation classes. The results are valid for the typical mixed spaces of Raviart-Thomas or Brezzi-Douglas- Marini type with arbitrary fixed polynomial degree in two and three space dimensions.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Adaptive finite element method
Clusters of eigenvalues
Eigenvalue problem
Mixed finite element method
File in questo prodotto:
File Dimensione Formato  
prod_371803-doc_153153.pdf

accesso aperto

Descrizione: OPTIMAL CONVERGENCE OF ADAPTIVE FEM FOR EIGENVALUE CLUSTERS IN MIXED FORM
Tipologia: Versione Editoriale (PDF)
Dimensione 306.45 kB
Formato Adobe PDF
306.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact