In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix-Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues. Copyright © 2015 John Wiley & Sons, Ltd.
A posteriori error analysis for nonconforming approximation of multiple eigenvalues
D Boffi;L Gastaldi
2017
Abstract
In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix-Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues. Copyright © 2015 John Wiley & Sons, Ltd.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_371813-doc_153157.pdf
non disponibili
Descrizione: A posteriori error analysis for nonconforming approximation of multiple eigenvalues
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_371813-doc_153158.pdf
accesso aperto
Descrizione: A posteriori error analysis for nonconforming approximation of multiple eigenvalues
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.