Films of Ni@CoO core-shell nanoparticles (NP Ni core size d = 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

Investigation of Ni@CoO Core-Shell Nanoparticle Films Synthesized with Sequential Layer Deposition

Luches P;Valeri S;Turchini S;Bertoni G;Ferretti A M;Ponti A;
2017

Abstract

Films of Ni@CoO core-shell nanoparticles (NP Ni core size d = 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.
2017
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Nanoscienze - NANO
Ni
CoO
core-shell nanoparticles
electron microscopy
X-ray photoelectron spectroscopy
X-ray magnetic circular dichroism
File in questo prodotto:
File Dimensione Formato  
prod_366616-doc_121068.pdf

solo utenti autorizzati

Descrizione: Investigation of Ni@CoO Core-Shell Nanoparticle Films Synthesized with Sequential Layer Deposition
Tipologia: Versione Editoriale (PDF)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_366616-doc_185696.pdf

accesso aperto

Descrizione: postprint
Tipologia: Versione Editoriale (PDF)
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/331760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact