In this demo paper we propose RankEval, an open-source tool for the analysis and evaluation of Learning-to-Rank (LtR) models based on ensembles of regression trees. Gradient Boosted Regression Trees (GBRT) is a flexible statistical learning technique for classification and regression at the state of the art for training effective LtR solutions. Indeed, the success of GBRT fostered the development of several open-source LtR libraries targeting efficiency of the learning phase and effectiveness of the resulting models. However, these libraries offer only very limited help for the tuning and evaluation of the trained models. In addition, the implementations provided for even the most traditional IR evaluation metrics differ from library to library, thus making the objective evaluation and comparison between trained models a difficult task. RankEval addresses these issues by providing a common ground for LtR libraries that offers useful and interoperable tools for a comprehensive comparison and in-depth analysis of ranking models.

RankEval: an evaluation and analysis framework for learning-to-rank solutions

Lucchese C;Nardini FM;Perego R;Trani S
2017

Abstract

In this demo paper we propose RankEval, an open-source tool for the analysis and evaluation of Learning-to-Rank (LtR) models based on ensembles of regression trees. Gradient Boosted Regression Trees (GBRT) is a flexible statistical learning technique for classification and regression at the state of the art for training effective LtR solutions. Indeed, the success of GBRT fostered the development of several open-source LtR libraries targeting efficiency of the learning phase and effectiveness of the resulting models. However, these libraries offer only very limited help for the tuning and evaluation of the trained models. In addition, the implementations provided for even the most traditional IR evaluation metrics differ from library to library, thus making the objective evaluation and comparison between trained models a difficult task. RankEval addresses these issues by providing a common ground for LtR libraries that offers useful and interoperable tools for a comprehensive comparison and in-depth analysis of ranking models.
2017
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-5022-8
Learning to rank
File in questo prodotto:
File Dimensione Formato  
prod_381010-doc_132906.pdf

solo utenti autorizzati

Descrizione: RankEval: an evaluation and analysis framework for learning-to-rank solutions
Tipologia: Versione Editoriale (PDF)
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact