Classification of morphological features in biological samples is usually performed by a trainedeye but the increasing amount of available digital images calls for semi-automatic classificationtechniques. Here we explore this possibility in the context of acrosome morphological analysis duringspermiogenesis. Our method combines feature extraction from three dimensional reconstructionof confocal images with principal component analysis and machine learning. The method could beparticularly useful in cases where the amount of data does not allow for a direct inspection by trainedeye.

Probing spermiogenesis: a digital strategy for mouse acrosome classification

Taloni A.;Zapperi S.;
2017

Abstract

Classification of morphological features in biological samples is usually performed by a trainedeye but the increasing amount of available digital images calls for semi-automatic classificationtechniques. Here we explore this possibility in the context of acrosome morphological analysis duringspermiogenesis. Our method combines feature extraction from three dimensional reconstructionof confocal images with principal component analysis and machine learning. The method could beparticularly useful in cases where the amount of data does not allow for a direct inspection by trainedeye.
2017
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto dei Sistemi Complessi - ISC
spermiogenesis
complexity
machine learning
File in questo prodotto:
File Dimensione Formato  
prod_373375-doc_125572.pdf

accesso aperto

Descrizione: Probing spermiogenesis: a digital strategy for mouse acrosome classification
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact