Quantum simulators are controllable systems that can be used to simulate other quantum systems. Here we focus on the dynamics of a chain of molecular qubits with interposed antiferromagnetic dimers. We theoretically show that its dynamics can be controlled by means of uniform magnetic pulses and used to mimic the evolution of other quantum systems, including fermionic ones. We propose two proof-of-principle experiments based on the simulation of the Ising model in a transverse field and of the quantum tunneling of the magnetization in a spin-1 system.
Molecular Nanomagnets as Quantum Simulators
Troiani F;
2011
Abstract
Quantum simulators are controllable systems that can be used to simulate other quantum systems. Here we focus on the dynamics of a chain of molecular qubits with interposed antiferromagnetic dimers. We theoretically show that its dynamics can be controlled by means of uniform magnetic pulses and used to mimic the evolution of other quantum systems, including fermionic ones. We propose two proof-of-principle experiments based on the simulation of the Ising model in a transverse field and of the quantum tunneling of the magnetization in a spin-1 system.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.