Smart (Nano) materials with biosensing functions posses enormous potential in development of new generation of stable biosensors, chemical sensors, and actuators. Recently, there is a considerable interest in using TiO2 nanostructured materials as a filmforming material since they have high surface area, optical transparency, high biocompatibility, and relatively good conductivity. In this work, TiO2 nanostructured films were used as nanoporous electrodes to study the electron transfer mechanisms of dopamine. epinephrine and norepinephrine, in order to develop a new generation of chemical sensors. The interesting results obtained are described herein and the analytical characterization of these neurotransmitter sensors is reported.
Electrochemical direct determination of catecholamines for the early detection of neurodegenerative diseases.
Curulli Antonella
2009
Abstract
Smart (Nano) materials with biosensing functions posses enormous potential in development of new generation of stable biosensors, chemical sensors, and actuators. Recently, there is a considerable interest in using TiO2 nanostructured materials as a filmforming material since they have high surface area, optical transparency, high biocompatibility, and relatively good conductivity. In this work, TiO2 nanostructured films were used as nanoporous electrodes to study the electron transfer mechanisms of dopamine. epinephrine and norepinephrine, in order to develop a new generation of chemical sensors. The interesting results obtained are described herein and the analytical characterization of these neurotransmitter sensors is reported.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.