We provide necessary and sufficient conditions for the generalized (star operator)-Sylvester matrix equation, AXB+CX(star operator)D=E, to have exactly one solution for any right-hand side E. These conditions are given for arbitrary coefficient matrices A, B, C, D (either square or rectangular) and generalize existing results for the same equation with square coefficients. We also review the known results regarding the existence and uniqueness of solution for generalized Sylvester and (star operator)-Sylvester equations.
Solvability and uniqueness criteria for generalized Sylvester-type equations
Robol L
2018
Abstract
We provide necessary and sufficient conditions for the generalized (star operator)-Sylvester matrix equation, AXB+CX(star operator)D=E, to have exactly one solution for any right-hand side E. These conditions are given for arbitrary coefficient matrices A, B, C, D (either square or rectangular) and generalize existing results for the same equation with square coefficients. We also review the known results regarding the existence and uniqueness of solution for generalized Sylvester and (star operator)-Sylvester equations.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_376258-doc_127033.pdf
solo utenti autorizzati
Descrizione: Solvability and uniqueness criteria for generalized Sylvester-type equations
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
prod_376258-doc_135849.pdf
accesso aperto
Descrizione: Solvability and uniqueness criteria for generalized Sylvester-type equations
Tipologia:
Versione Editoriale (PDF)
Dimensione
383.91 kB
Formato
Adobe PDF
|
383.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


