Leaf transpiration drives many of the processes involved in phyto-technologies, and it can represent a useful mechanism to remove water from different kind of storage basins presenting inorganic, organic or microbiological contamination (phyto-dehydration), with the aim to reduce the risk of environmental contamination. In this framework, a mesocosm-scale trial was carried out to test the capacity of different helophyte species to reduce the excess of water in an artificial pond filled with oversaturated sludge.

Phyto-dehydration of confined sludge: a sustainable approach for the management of polluted ponds

Grenni P;Barra Caracciolo A;Massacci A;
2018

Abstract

Leaf transpiration drives many of the processes involved in phyto-technologies, and it can represent a useful mechanism to remove water from different kind of storage basins presenting inorganic, organic or microbiological contamination (phyto-dehydration), with the aim to reduce the risk of environmental contamination. In this framework, a mesocosm-scale trial was carried out to test the capacity of different helophyte species to reduce the excess of water in an artificial pond filled with oversaturated sludge.
2018
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
Istituto di Ricerca Sulle Acque - IRSA
Carex acutiformis Phragmites australis
Phyto-remediation
Pig slurries
greenhouse
gas emissions
Polluted sludge
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact