This paper presents a combination of guidance and control algorithms, for spacecraft proximity operations in presence of multiple obstacles. The guidance algorithm is based on the theory of artificial potential field (APF) and the control algorithm is based on the theory of sliding mode control (SMC). The effects of both uncertainties and external disturbances are considered in this research. The proposed strategy is validated both by simulations and by experiments on a real testbed. The proposed algorithm appears to be suitable for autonomous, real-time control of complex maneuvers with a minimum on-board computational effort. It is also able to avoid obstacles while avoiding the local minimum issues in APF algorithms.

Artificial Potential Field and Sliding Mode Strategies for Proximity Operations with Obstacle Avoidance

Punta E;
2018

Abstract

This paper presents a combination of guidance and control algorithms, for spacecraft proximity operations in presence of multiple obstacles. The guidance algorithm is based on the theory of artificial potential field (APF) and the control algorithm is based on the theory of sliding mode control (SMC). The effects of both uncertainties and external disturbances are considered in this research. The proposed strategy is validated both by simulations and by experiments on a real testbed. The proposed algorithm appears to be suitable for autonomous, real-time control of complex maneuvers with a minimum on-board computational effort. It is also able to avoid obstacles while avoiding the local minimum issues in APF algorithms.
2018
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Artificial Potential Field
Sliding Mode Strategies
Proximity Operations
Obstacle Avoidance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact