The incorporation of nanostructured photocatalysts in polymers is a strategic way to obtain novel water purification systems. This approach takes the advantages of: (1) the presence of nanostructured photocatalyst; (2) the flexibility of polymer; (3) the immobilization of photocatalyst, that avoids the recovery of the nanoparticles after the water treatment. Here we present ZnO-polymer nanocomposites with high photocatalytic performance and stability. Poly (methyl methacrylate) (PMMA) powders were coated with a thin layer of ZnO (80 nm thick) by atomic layer deposition at low temperature (80 degrees C). Then the method of sonication and solution casting was performed so to obtain the ZnO/PMMA nanocomposites. A complete morphological, structural, and chemical characterization was made by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The remarkable photocatalytic efficiency of the nanocomposites was demonstrated by the degradation of methylene blue (MB) dye and phenol in aqueous solution under UV light irradiation. The composites also resulted reusable and stable, since they maintained an unmodified photo-activity after several MB discoloration runs. Thus, these results demonstrate that the proposed ZnO/PMMA nanocomposite is a promising candidate for photocatalytic applications and, in particular, for novel water treatment.

Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications

Di Mauro Alessandro;Cantarella Maria;Nicotra Giuseppe;Pellegrino Giovanna;Privitera Vittorio;Impellizzeri Giuliana
2017

Abstract

The incorporation of nanostructured photocatalysts in polymers is a strategic way to obtain novel water purification systems. This approach takes the advantages of: (1) the presence of nanostructured photocatalyst; (2) the flexibility of polymer; (3) the immobilization of photocatalyst, that avoids the recovery of the nanoparticles after the water treatment. Here we present ZnO-polymer nanocomposites with high photocatalytic performance and stability. Poly (methyl methacrylate) (PMMA) powders were coated with a thin layer of ZnO (80 nm thick) by atomic layer deposition at low temperature (80 degrees C). Then the method of sonication and solution casting was performed so to obtain the ZnO/PMMA nanocomposites. A complete morphological, structural, and chemical characterization was made by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The remarkable photocatalytic efficiency of the nanocomposites was demonstrated by the degradation of methylene blue (MB) dye and phenol in aqueous solution under UV light irradiation. The composites also resulted reusable and stable, since they maintained an unmodified photo-activity after several MB discoloration runs. Thus, these results demonstrate that the proposed ZnO/PMMA nanocomposite is a promising candidate for photocatalytic applications and, in particular, for novel water treatment.
2017
Istituto per la Microelettronica e Microsistemi - IMM
photocalysis
nanocomposite
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact