The four wave mixing (FWM) process is widely exploited for the generation of tunable ultrashort light pulses. Usually this process is driven in bulk materials, which are however prone to optical damage at high pump laser intensities. A tunable source of ultrashort 10 mu J level pulses in the visible spectral region is described here. In particular, we report on the implementation of FWM driven by a two-color ultrafast laser pulse inside a gas-filled hollow core fiber (HCF). Due to the high-damage threshold and the long interaction distance, the HCF-based FWM configuration proves to be suitable for high-energy applications. Moreover, this technique can be potentially used for ultrashort pulses generation within a wide range of spectral regions; a discussion on the possibility to extend our scheme to the generation of few-cycle mid-IR pulse is provided.

Generation of ultrashort pulses by four wave mixing in a gas-filled hollow core fiber

Matteo Negro;Michele Devetta;Davide Faccialà;Caterina Vozzi;Salvatore Stagira
2018

Abstract

The four wave mixing (FWM) process is widely exploited for the generation of tunable ultrashort light pulses. Usually this process is driven in bulk materials, which are however prone to optical damage at high pump laser intensities. A tunable source of ultrashort 10 mu J level pulses in the visible spectral region is described here. In particular, we report on the implementation of FWM driven by a two-color ultrafast laser pulse inside a gas-filled hollow core fiber (HCF). Due to the high-damage threshold and the long interaction distance, the HCF-based FWM configuration proves to be suitable for high-energy applications. Moreover, this technique can be potentially used for ultrashort pulses generation within a wide range of spectral regions; a discussion on the possibility to extend our scheme to the generation of few-cycle mid-IR pulse is provided.
2018
Istituto di fotonica e nanotecnologie - IFN
nonlinear wave mixing
nonlinear optics
parametric processes
ultrafast no
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact