Machine-learning algorithms can help to infer semantic annotations from trajectory data by learning from sets of labeled data. Speci cally, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web- based interactive tool visually guides users through this annotation process.
ANALYTiC: An Active Learning System for Trajectory Classification
Renso C;
2017
Abstract
Machine-learning algorithms can help to infer semantic annotations from trajectory data by learning from sets of labeled data. Speci cally, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web- based interactive tool visually guides users through this annotation process.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_384697-doc_131705.pdf
solo utenti autorizzati
Descrizione: ANALYTiC: An Active Learning System for Trajectory Classification
Tipologia:
Versione Editoriale (PDF)
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
prod_384697-doc_168797.pdf
accesso aperto
Descrizione: ANALYTiC: An Active Learning System for Trajectory Classification
Tipologia:
Versione Editoriale (PDF)
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


