In this article, we present a novel underwater dataset collected from several field trials within the EU FP7 project "Cognitive autonomous diving buddy (CADDY)", where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor their activities. To our knowledge, this is one of the first efforts to collect a large public dataset in underwater environments with the purpose of studying and boosting object classification, segmentation and human pose estimation tasks. The first part of the dataset contains stereo camera recordings (?10 K) of divers performing hand gestures to communicate with an AUV in different environmental conditions. The gestures can be used to test the robustness of visual detection and classification algorithms in underwater conditions, e.g., under color attenuation and light backscatter. The second part includes stereo footage (?12.7 K) of divers free-swimming in front of the AUV, along with synchronized measurements from Inertial Measurement Units (IMU) located throughout the diver's suit (DiverNet), which serve as ground-truth for human pose and tracking methods. In both cases, these rectified images allow the investigation of 3D representation and reasoning pipelines from low-texture targets commonly present in underwater scenarios. This work describes the recording platform, sensor calibration procedure plus the data format and the software utilities provided to use the dataset.
CADDY Underwater Stereo-Vision Dataset for Human-Robot Interaction (HRI) in the Context of Diver Activities
Andrea Ranieri;Davide Chiarella;Enrica Zereik;
2019
Abstract
In this article, we present a novel underwater dataset collected from several field trials within the EU FP7 project "Cognitive autonomous diving buddy (CADDY)", where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor their activities. To our knowledge, this is one of the first efforts to collect a large public dataset in underwater environments with the purpose of studying and boosting object classification, segmentation and human pose estimation tasks. The first part of the dataset contains stereo camera recordings (?10 K) of divers performing hand gestures to communicate with an AUV in different environmental conditions. The gestures can be used to test the robustness of visual detection and classification algorithms in underwater conditions, e.g., under color attenuation and light backscatter. The second part includes stereo footage (?12.7 K) of divers free-swimming in front of the AUV, along with synchronized measurements from Inertial Measurement Units (IMU) located throughout the diver's suit (DiverNet), which serve as ground-truth for human pose and tracking methods. In both cases, these rectified images allow the investigation of 3D representation and reasoning pipelines from low-texture targets commonly present in underwater scenarios. This work describes the recording platform, sensor calibration procedure plus the data format and the software utilities provided to use the dataset.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.ancejournal | JOURNAL OF MARINE SCIENCE AND ENGINEERING | - |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | - |
| dc.authority.orgunit | Istituto di iNgegneria del Mare - INM (ex INSEAN) | - |
| dc.authority.people | Arturo Gomez Chavez | it |
| dc.authority.people | Andrea Ranieri | it |
| dc.authority.people | Davide Chiarella | it |
| dc.authority.people | Enrica Zereik | it |
| dc.authority.people | Anja Babi | it |
| dc.authority.people | Andreas Birk | it |
| dc.authority.project | Cognitive autonomous diving buddy | - |
| dc.collection.id.s | b3f88f24-048a-4e43-8ab1-6697b90e068e | * |
| dc.collection.name | 01.01 Articolo in rivista | * |
| dc.contributor.appartenenza | Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova | * |
| dc.contributor.appartenenza | Istituto di iNgegneria del Mare - INM (ex INSEAN) - Sede Secondaria Genova | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.appartenenza.mi | 921 | * |
| dc.contributor.appartenenza.mi | 1061 | * |
| dc.date.accessioned | 2024/02/21 05:39:20 | - |
| dc.date.available | 2024/02/21 05:39:20 | - |
| dc.date.issued | 2019 | - |
| dc.description.abstracteng | In this article, we present a novel underwater dataset collected from several field trials within the EU FP7 project "Cognitive autonomous diving buddy (CADDY)", where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor their activities. To our knowledge, this is one of the first efforts to collect a large public dataset in underwater environments with the purpose of studying and boosting object classification, segmentation and human pose estimation tasks. The first part of the dataset contains stereo camera recordings (?10 K) of divers performing hand gestures to communicate with an AUV in different environmental conditions. The gestures can be used to test the robustness of visual detection and classification algorithms in underwater conditions, e.g., under color attenuation and light backscatter. The second part includes stereo footage (?12.7 K) of divers free-swimming in front of the AUV, along with synchronized measurements from Inertial Measurement Units (IMU) located throughout the diver's suit (DiverNet), which serve as ground-truth for human pose and tracking methods. In both cases, these rectified images allow the investigation of 3D representation and reasoning pipelines from low-texture targets commonly present in underwater scenarios. This work describes the recording platform, sensor calibration procedure plus the data format and the software utilities provided to use the dataset. | - |
| dc.description.affiliations | Jacobs University Bremen, CNR-INM, CNR-ILC, CNR-INM, University of Zagreb, Jacobs University Bremen | - |
| dc.description.allpeople | Gomez Chavez, Arturo; Ranieri, Andrea; Chiarella, Davide; Zereik, Enrica; Babi, Anja; Birk, Andreas | - |
| dc.description.allpeopleoriginal | Arturo Gomez Chavez, Andrea Ranieri, Davide Chiarella, Enrica Zereik, Anja Babi?, Andreas Birk | - |
| dc.description.fulltext | open | en |
| dc.description.numberofauthors | 6 | - |
| dc.identifier.doi | 10.3390/jmse7010016 | - |
| dc.identifier.isi | WOS:000459717300015 | - |
| dc.identifier.scopus | 2-s2.0-85060193254 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/345428 | - |
| dc.identifier.url | https://www.mdpi.com/2077-1312/7/1/16 | - |
| dc.language.iso | eng | - |
| dc.miur.last.status.update | 2025-01-20T21:40:39Z | * |
| dc.relation.firstpage | 1 | - |
| dc.relation.issue | 1 | - |
| dc.relation.lastpage | 14 | - |
| dc.relation.numberofpages | 14 | - |
| dc.relation.projectAcronym | CADDY | - |
| dc.relation.projectAwardNumber | 611373 | - |
| dc.relation.projectAwardTitle | Cognitive autonomous diving buddy | - |
| dc.relation.projectFunderName | - | en |
| dc.relation.projectFundingStream | FP7 | - |
| dc.relation.volume | 7 | - |
| dc.subject.keywords | dataset | - |
| dc.subject.keywords | underwater imaging | - |
| dc.subject.keywords | image processing | - |
| dc.subject.keywords | marine robotics | - |
| dc.subject.keywords | field robotics | - |
| dc.subject.keywords | human-robot interaction | - |
| dc.subject.keywords | stereo vision | - |
| dc.subject.keywords | object classification | - |
| dc.subject.keywords | human pose estimation | - |
| dc.subject.singlekeyword | dataset | * |
| dc.subject.singlekeyword | underwater imaging | * |
| dc.subject.singlekeyword | image processing | * |
| dc.subject.singlekeyword | marine robotics | * |
| dc.subject.singlekeyword | field robotics | * |
| dc.subject.singlekeyword | human-robot interaction | * |
| dc.subject.singlekeyword | stereo vision | * |
| dc.subject.singlekeyword | object classification | * |
| dc.subject.singlekeyword | human pose estimation | * |
| dc.title | CADDY Underwater Stereo-Vision Dataset for Human-Robot Interaction (HRI) in the Context of Diver Activities | en |
| dc.type.driver | info:eu-repo/semantics/article | - |
| dc.type.full | 01 Contributo su Rivista::01.01 Articolo in rivista | it |
| dc.type.miur | 262 | - |
| dc.type.referee | Sì, ma tipo non specificato | - |
| dc.ugov.descaux1 | 398298 | - |
| iris.isi.ideLinkStatusDate | 2025/02/13 14:11:19 | * |
| iris.isi.ideLinkStatusMillisecond | 1739452279877 | * |
| iris.isi.metadataErrorDescription | 0 | - |
| iris.isi.metadataErrorType | ERROR_NO_MATCH | - |
| iris.isi.metadataStatus | ERROR | - |
| iris.mediafilter.data | 2025/04/11 03:16:52 | * |
| iris.orcid.lastModifiedDate | 2025/02/13 14:11:19 | * |
| iris.orcid.lastModifiedMillisecond | 1739452279846 | * |
| iris.scopus.extIssued | 2019 | - |
| iris.scopus.extTitle | CADDY underwater Stereo-Vision dataset for human-robot interaction (HRI) in the context of diver activities | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.bestoahost | publisher | * |
| iris.unpaywall.bestoaversion | publishedVersion | * |
| iris.unpaywall.doi | 10.3390/jmse7010016 | * |
| iris.unpaywall.hosttype | publisher | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | true | * |
| iris.unpaywall.landingpage | https://doi.org/10.3390/jmse7010016 | * |
| iris.unpaywall.license | cc-by | * |
| iris.unpaywall.metadataCallLastModified | 14/02/2025 19:01:47 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1739556107645 | - |
| iris.unpaywall.oastatus | gold | * |
| iris.unpaywall.pdfurl | https://www.mdpi.com/2077-1312/7/1/16/pdf?version=1547637387 | * |
| scopus.authority.ancejournal | JOURNAL OF MARINE SCIENCE AND ENGINEERING###2077-1312 | * |
| scopus.category | 2205 | * |
| scopus.category | 2312 | * |
| scopus.category | 2212 | * |
| scopus.contributor.affiliation | Jacobs University Bremen | - |
| scopus.contributor.affiliation | Institute of Marine Engineering-National Research Council | - |
| scopus.contributor.affiliation | Institute for Computational Linguistics-National Research Council | - |
| scopus.contributor.affiliation | Institute of Marine Engineering-National Research Council | - |
| scopus.contributor.affiliation | University of Zagreb | - |
| scopus.contributor.affiliation | Jacobs University Bremen | - |
| scopus.contributor.afid | 60016458 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60159855 | - |
| scopus.contributor.afid | 60016458 | - |
| scopus.contributor.auid | 57104723100 | - |
| scopus.contributor.auid | 56512556800 | - |
| scopus.contributor.auid | 25930765400 | - |
| scopus.contributor.auid | 35106497900 | - |
| scopus.contributor.auid | 56715404200 | - |
| scopus.contributor.auid | 7005194050 | - |
| scopus.contributor.country | Germany | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Croatia | - |
| scopus.contributor.country | Germany | - |
| scopus.contributor.dptid | 109048364 | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | 109048364 | - |
| scopus.contributor.name | Arturo Gomez | - |
| scopus.contributor.name | Andrea | - |
| scopus.contributor.name | Davide | - |
| scopus.contributor.name | Enrica | - |
| scopus.contributor.name | Anja | - |
| scopus.contributor.name | Andreas | - |
| scopus.contributor.subaffiliation | Robotics Group;Computer Science and Electrical Engineering; | - |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | Faculty of Electrical Engineering and Computing; | - |
| scopus.contributor.subaffiliation | Robotics Group;Computer Science and Electrical Engineering; | - |
| scopus.contributor.surname | Chavez | - |
| scopus.contributor.surname | Ranieri | - |
| scopus.contributor.surname | Chiarella | - |
| scopus.contributor.surname | Zereik | - |
| scopus.contributor.surname | Babić | - |
| scopus.contributor.surname | Birk | - |
| scopus.date.issued | 2019 | * |
| scopus.description.abstracteng | In this article, we present a novel underwater dataset collected from several field trials within the EU FP7 project "Cognitive autonomous diving buddy (CADDY)", where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor their activities. To our knowledge, this is one of the first efforts to collect a large public dataset in underwater environments with the purpose of studying and boosting object classification, segmentation and human pose estimation tasks. The first part of the dataset contains stereo camera recordings (≈10 K) of divers performing hand gestures to communicate with an AUV in different environmental conditions. The gestures can be used to test the robustness of visual detection and classification algorithms in underwater conditions, e.g., under color attenuation and light backscatter. The second part includes stereo footage (≈12.7 K) of divers free-swimming in front of the AUV, along with synchronized measurements from Inertial Measurement Units (IMU) located throughout the diver's suit (DiverNet), which serve as ground-truth for human pose and tracking methods. In both cases, these rectified images allow the investigation of 3D representation and reasoning pipelines from low-texture targets commonly present in underwater scenarios. This work describes the recording platform, sensor calibration procedure plus the data format and the software utilities provided to use the dataset. | * |
| scopus.description.allpeopleoriginal | Chavez A.G.; Ranieri A.; Chiarella D.; Zereik E.; Babic A.; Birk A. | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.description.allpeopleoriginal | * |
| scopus.differences | scopus.description.abstracteng | * |
| scopus.document.type | ar | * |
| scopus.document.types | ar | * |
| scopus.funding.funders | 501100000780 - European Commission; 100011102 - Seventh Framework Programme; 100011102 - Seventh Framework Programme; | * |
| scopus.funding.ids | 611373; | * |
| scopus.identifier.doi | 10.3390/jmse7010016 | * |
| scopus.identifier.eissn | 2077-1312 | * |
| scopus.identifier.pui | 625982156 | * |
| scopus.identifier.scopus | 2-s2.0-85060193254 | * |
| scopus.journal.sourceid | 21100830140 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | MDPI AG | * |
| scopus.publisher.place | ;Postfach | * |
| scopus.relation.article | 16 | * |
| scopus.relation.issue | 1 | * |
| scopus.relation.volume | 7 | * |
| scopus.subject.keywords | Dataset; Field robotics; Human pose estimation; Human-robot interaction; Image processing; Marine robotics; Object classification; Stereo vision; Underwater imaging; | * |
| scopus.title | CADDY underwater Stereo-Vision dataset for human-robot interaction (HRI) in the context of diver activities | * |
| scopus.titleeng | CADDY underwater Stereo-Vision dataset for human-robot interaction (HRI) in the context of diver activities | * |
| Appare nelle tipologie: | 01.01 Articolo in rivista | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_398298-doc_137915.pdf
accesso aperto
Descrizione: CADDY Underwater Stereo-Vision Dataset for Human-Robot Interaction (HRI) in the Context of Diver Activities
Tipologia:
Versione Editoriale (PDF)
Dimensione
4.72 MB
Formato
Adobe PDF
|
4.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


