We study the time-dependent quantum scattering of a spatially indirect exciton by an external potential, taking fully into account the relative quantum dynamics of the electron-hole (e-h) pair. Exact calculations for an e-h wave packet show that transfer of energy between centre-of-mass (c.m.) and relative degrees of freedom may result in a genuine correction to the evolution during the scattering and eventually at asymptotic times. We show in experimentally relevant regimes and device configurations, that transmission resonances, tunnelling probabilities, diffraction patterns and wave packet fragmentation of indirect excitons are largely determined by the internal dynamics, and could not be reproduced by point-like dipole models or mean-field calculations. We show that a properly-designed local self-energy potential to be added to the c.m. Hamiltonian embeds the effects of the c.m.-internal motion correlation at a small fraction of the computation load needed for full-propagation calculations. The explicit form of this self-energy emphasises the dominant role of internal virtual transitions in determining scattering coefficients of indirect excitons.

The role of internal dynamics in the coherent evolution of indirect excitons

Bertoni A;Goldoni G
2017

Abstract

We study the time-dependent quantum scattering of a spatially indirect exciton by an external potential, taking fully into account the relative quantum dynamics of the electron-hole (e-h) pair. Exact calculations for an e-h wave packet show that transfer of energy between centre-of-mass (c.m.) and relative degrees of freedom may result in a genuine correction to the evolution during the scattering and eventually at asymptotic times. We show in experimentally relevant regimes and device configurations, that transmission resonances, tunnelling probabilities, diffraction patterns and wave packet fragmentation of indirect excitons are largely determined by the internal dynamics, and could not be reproduced by point-like dipole models or mean-field calculations. We show that a properly-designed local self-energy potential to be added to the c.m. Hamiltonian embeds the effects of the c.m.-internal motion correlation at a small fraction of the computation load needed for full-propagation calculations. The explicit form of this self-energy emphasises the dominant role of internal virtual transitions in determining scattering coefficients of indirect excitons.
2017
Istituto Nanoscienze - NANO
Composite particle scattering
Fourier split-Step method
Indirect excitons
Quantum tunnelling
Time-dependent Schrödinger equation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact