Oligothiophenes are -conjugated semiconducting and fluorescent molecules whose self-assembly properties are widely investigated for application in organic electronics, optoelectronics, biophotonics, and sensing. Here an approach to the preparation of crystalline oligothiophene nano/microfibers is reported based on the use of a sulfur overrich quaterthiophene building block, T4S4 , containing in its covalent network all the information needed to promote the directional, - stacking-driven, self-assembly of Y-T4S4-Y oligomers into fibers with hierarchical supramolecular arrangement from nano- to microscale. It is shown that when Y varies from unsubstituted thiophene to thiophene substituted with electron-withdrawing groups, a wide redistribution of the molecular electronic charge takes place without substantially affecting the aggregation modalities of the oligomer. In this way, a structurally comparable series of fibers is obtained having progressively varying optical properties, redox potentials, photoconductivity, and type of prevailing charge carriers (from p- to n-type). With the aid of density functional theory (DFT) calculations, combined with powder X-ray diffraction data, a model accounting for the growth of the fibers from molecular to nano- and microscale is proposed.
Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Self-Assembling Molecular Precursors
Di Maria Francesca;Zangoli Mattia;Gazzano Massimo;Fabiano Eduardo;Gentili Denis;Zanelli Alberto;Mazzaro Raffaello;Morandi Vittorio;Gigli Giuseppe;Liscio Andrea;Barbarella Giovanna
2018
Abstract
Oligothiophenes are -conjugated semiconducting and fluorescent molecules whose self-assembly properties are widely investigated for application in organic electronics, optoelectronics, biophotonics, and sensing. Here an approach to the preparation of crystalline oligothiophene nano/microfibers is reported based on the use of a sulfur overrich quaterthiophene building block, T4S4 , containing in its covalent network all the information needed to promote the directional, - stacking-driven, self-assembly of Y-T4S4-Y oligomers into fibers with hierarchical supramolecular arrangement from nano- to microscale. It is shown that when Y varies from unsubstituted thiophene to thiophene substituted with electron-withdrawing groups, a wide redistribution of the molecular electronic charge takes place without substantially affecting the aggregation modalities of the oligomer. In this way, a structurally comparable series of fibers is obtained having progressively varying optical properties, redox potentials, photoconductivity, and type of prevailing charge carriers (from p- to n-type). With the aid of density functional theory (DFT) calculations, combined with powder X-ray diffraction data, a model accounting for the growth of the fibers from molecular to nano- and microscale is proposed.File | Dimensione | Formato | |
---|---|---|---|
prod_390287-doc_161175.pdf
solo utenti autorizzati
Descrizione: Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Self-Assembling Molecular Precursors
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.99 MB
Formato
Adobe PDF
|
4.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.