BACKGROUND: Hybrid 18F-fluorodeoxyglucose (FDG) positron emission tomography and magnetic resonance imaging may differentiate mature fibrosis or scar from fibrosis associated to active inflammation in patients with Anderson-Fabry disease, even in nonhypertrophic stage. This study was designed to compare the results of positron emission tomography and magnetic resonance cardiac imaging with those of speckle-tracking echocardiography in heterozygous Anderson-Fabry disease females. METHODS AND RESULTS: Twenty-four heterozygous females carrying ?-galactosidase A mutation and without left ventricular hypertrophy underwent cardiac positron emission tomography and magnetic resonance using 18F-FDG for glucose uptake and 2-dimensional strain echocardiography. 18F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. Focal 18F-FDG uptake with COV >0.17 was detected in 13 patients, including 2 patients with late gadolinium enhancement at magnetic resonance. COV was 0.30±0.14 in patients with focal 18F-FDG uptake and 0.12±0.03 in those without (P<0.001). Strain echocardiography revealed worse global longitudinal systolic strain in patients with COV >0.17 compared with those with COV <=0.17 (-18.5±2.7% versus -22.2±1.8%; P=0.024). For predicting COV >0.17, a global longitudinal strain >-19.8% had 77% sensitivity and 91% specificity and a value >2 dysfunctional segments 92% sensitivity and 100% specificity. CONCLUSIONS: In females carrying ?-galactosidase A mutation, focal 18F-FDG uptake represents an early sign of disease-related myocardial damage and is associated with impaired left ventricular longitudinal function. These findings support the hypothesis that inflammation plays an important role in glycosphingolipids storage disorders.
Early Cardiac involvement affects left ventricular longitudinal function in females carrying ?- galactosidase a mutation role of hybrid positron emission tomography and magnetic resonance imaging and speckle-tracking echocardiography
Riccio E;Duro G;
2018
Abstract
BACKGROUND: Hybrid 18F-fluorodeoxyglucose (FDG) positron emission tomography and magnetic resonance imaging may differentiate mature fibrosis or scar from fibrosis associated to active inflammation in patients with Anderson-Fabry disease, even in nonhypertrophic stage. This study was designed to compare the results of positron emission tomography and magnetic resonance cardiac imaging with those of speckle-tracking echocardiography in heterozygous Anderson-Fabry disease females. METHODS AND RESULTS: Twenty-four heterozygous females carrying ?-galactosidase A mutation and without left ventricular hypertrophy underwent cardiac positron emission tomography and magnetic resonance using 18F-FDG for glucose uptake and 2-dimensional strain echocardiography. 18F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. Focal 18F-FDG uptake with COV >0.17 was detected in 13 patients, including 2 patients with late gadolinium enhancement at magnetic resonance. COV was 0.30±0.14 in patients with focal 18F-FDG uptake and 0.12±0.03 in those without (P<0.001). Strain echocardiography revealed worse global longitudinal systolic strain in patients with COV >0.17 compared with those with COV <=0.17 (-18.5±2.7% versus -22.2±1.8%; P=0.024). For predicting COV >0.17, a global longitudinal strain >-19.8% had 77% sensitivity and 91% specificity and a value >2 dysfunctional segments 92% sensitivity and 100% specificity. CONCLUSIONS: In females carrying ?-galactosidase A mutation, focal 18F-FDG uptake represents an early sign of disease-related myocardial damage and is associated with impaired left ventricular longitudinal function. These findings support the hypothesis that inflammation plays an important role in glycosphingolipids storage disorders.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.