A series of new ?-conjugated organic dyes (HKK-BTZ1, HKK-BTZ2, HKK-BTZ3 and HKK-BTZ4), comprising triphenylamine (TPA) moieties as the electron donor and benzothiadiazole moieties as the electron acceptor/anchoring groups, was synthesized for the use in dye-sensitized solar cells (DSSCs). TPA units are bridged to benzothiadiazole with single(S), double(D) and triple bonds(T) in different derivatives. And HKK-BTZ1 was modified by introducing alkoxy group of TPA unit, because the bulky alkoxy group is a strong donating group for the more red shift and for reducing aggregation of dyes in TiO2 film. The structure-property relationship was investigated. Under standard global AM 1.5 G illumination, a maximum photo-to-electron conversion efficiency of 7.30% was achieved with the DSSC based on dye HKK-BTZ4 (JSC = 17.9 mA/cm-2, VOC = 0.62 V, FF = 0.66), while the Ru dye N719-sensitized DSSC showed an efficiency of 7.82% with a JSC of 17.5 mA/cm-2, a VOC of 0.62 V, and a FF of 0.72.
Organic dyes incorporating low band-gap chromophores based on p-extended benzothiazole for dye-sensitized solar cells
C Anselmi;S Fantacci;
2011
Abstract
A series of new ?-conjugated organic dyes (HKK-BTZ1, HKK-BTZ2, HKK-BTZ3 and HKK-BTZ4), comprising triphenylamine (TPA) moieties as the electron donor and benzothiadiazole moieties as the electron acceptor/anchoring groups, was synthesized for the use in dye-sensitized solar cells (DSSCs). TPA units are bridged to benzothiadiazole with single(S), double(D) and triple bonds(T) in different derivatives. And HKK-BTZ1 was modified by introducing alkoxy group of TPA unit, because the bulky alkoxy group is a strong donating group for the more red shift and for reducing aggregation of dyes in TiO2 film. The structure-property relationship was investigated. Under standard global AM 1.5 G illumination, a maximum photo-to-electron conversion efficiency of 7.30% was achieved with the DSSC based on dye HKK-BTZ4 (JSC = 17.9 mA/cm-2, VOC = 0.62 V, FF = 0.66), while the Ru dye N719-sensitized DSSC showed an efficiency of 7.82% with a JSC of 17.5 mA/cm-2, a VOC of 0.62 V, and a FF of 0.72.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.