The aims of this study are to isolate new bacteriocinogenic lactic acid bacterial strains from white (Penaeus vannamei) and pink (Palaemon serratus) raw shrimps and evaluate their technological and probiotic potentialities. Seven strains were selected, among fifty active isolates, as producing interesting antimicrobial activity. Identified as Enterococcus lactis, these isolates were able to produce enterocins A, B and/or P. The safety aspect, assessed by microbiological and molecular tests, demonstrated that the strains were susceptible to relevant antibiotics such as vancomycin, negative for haemolysin and gelatinase activities, and did not harbour virulence and antibiotic resistance genes. The assessment of potential probiotic and technological properties showed a low or no lipolytic activity, moderate milk-acidifying ability, high reducing power, proteolytic activity and tolerance to bile (P < 0.05) and good autoaggregation and coaggregation capacities. Two strains designated as CQ and C43 exhibiting high enzymatic activities and bile salt hydrolase activity were found to display high survival under simulated in vitro oral cavity and gastrointestinal tract conditions caused by presence of lysozyme, pepsin, pancreatin, bile salts and acidic pH. This study highlights safe Enterococcus lactis strains with great technological and probiotic potentials for future application as new starter, adjunct, protective or probiotic cultures in food industry.

Safety, potential biotechnological and probiotic properties of bacteriocinogenic Enterococcus lactis strains isolated from raw shrimps.

Morandi Stefano;Cremonesi Paola;
2018

Abstract

The aims of this study are to isolate new bacteriocinogenic lactic acid bacterial strains from white (Penaeus vannamei) and pink (Palaemon serratus) raw shrimps and evaluate their technological and probiotic potentialities. Seven strains were selected, among fifty active isolates, as producing interesting antimicrobial activity. Identified as Enterococcus lactis, these isolates were able to produce enterocins A, B and/or P. The safety aspect, assessed by microbiological and molecular tests, demonstrated that the strains were susceptible to relevant antibiotics such as vancomycin, negative for haemolysin and gelatinase activities, and did not harbour virulence and antibiotic resistance genes. The assessment of potential probiotic and technological properties showed a low or no lipolytic activity, moderate milk-acidifying ability, high reducing power, proteolytic activity and tolerance to bile (P < 0.05) and good autoaggregation and coaggregation capacities. Two strains designated as CQ and C43 exhibiting high enzymatic activities and bile salt hydrolase activity were found to display high survival under simulated in vitro oral cavity and gastrointestinal tract conditions caused by presence of lysozyme, pepsin, pancreatin, bile salts and acidic pH. This study highlights safe Enterococcus lactis strains with great technological and probiotic potentials for future application as new starter, adjunct, protective or probiotic cultures in food industry.
2018
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Istituto di Scienze delle Produzioni Alimentari - ISPA
Enterococcus lactis
Enterocin
Antimicrobial activity
Safety
Technological properties
Probiotic attributes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/348830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact