Periodic drives are a common tool to control physical systems, but have a limited applicability because time-dependent drives generically lead to heating. How to prevent the heating is a fundamental question with important practical implications. We address this question by analyzing a chain of coupled kicked rotors, and find two situations in which the heating rate can be arbitrarily small: (i) linear stability, for initial conditions close to a fixed point, and (ii) marginal localization, for drives with large frequencies and small amplitudes. In both cases, we find that the dynamics shows universal scaling laws that allow us to distinguish localized, diffusive, and sub-diffusive regimes. The marginally localized phase has common traits with recently discovered pre-thermalized phases of many-body quantum-Hamiltonian systems, but does not require quantum coherence.

Stability and pre-thermalization in chains of classical kicked rotors

Citro R;
2018

Abstract

Periodic drives are a common tool to control physical systems, but have a limited applicability because time-dependent drives generically lead to heating. How to prevent the heating is a fundamental question with important practical implications. We address this question by analyzing a chain of coupled kicked rotors, and find two situations in which the heating rate can be arbitrarily small: (i) linear stability, for initial conditions close to a fixed point, and (ii) marginal localization, for drives with large frequencies and small amplitudes. In both cases, we find that the dynamics shows universal scaling laws that allow us to distinguish localized, diffusive, and sub-diffusive regimes. The marginally localized phase has common traits with recently discovered pre-thermalized phases of many-body quantum-Hamiltonian systems, but does not require quantum coherence.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
heating
kicked rotors
marginal localization
periodic drives
pre-thermalization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact