Long term sleep quality assessment is essential to diagnose sleep disorders and to continuously monitor the health status. However, traditional polysomnography techniques are not suitable for long-term monitoring, whereas, methods able to continuously monitor the sleep pattern in an unobtrusive way are needed. In this paper, we present a general purpose sleep monitoring system that can be used for the pressure ulcer risk assessment, to monitor bed exits, and to observe the influence of medication on the sleep behaviour. Moreover, we compare several supervised learning algorithms in order to determine the most suitable in this context. Experimental results obtained by comparing the selected supervised algorithms show that we can accurately infer sleep duration, sleep positions, and routines with a completely unobtrusive approach.

Understanding human sleep behaviour by machine learning

Crivello A;Palumbo F;Barsocchi P;La Rosa D;
2018

Abstract

Long term sleep quality assessment is essential to diagnose sleep disorders and to continuously monitor the health status. However, traditional polysomnography techniques are not suitable for long-term monitoring, whereas, methods able to continuously monitor the sleep pattern in an unobtrusive way are needed. In this paper, we present a general purpose sleep monitoring system that can be used for the pressure ulcer risk assessment, to monitor bed exits, and to observe the influence of medication on the sleep behaviour. Moreover, we compare several supervised learning algorithms in order to determine the most suitable in this context. Experimental results obtained by comparing the selected supervised algorithms show that we can accurately infer sleep duration, sleep positions, and routines with a completely unobtrusive approach.
2018
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-319-95996-2
Sleep monitoring
Machine learning
Human sleep
Long-term monitoring
Supervised learning
File in questo prodotto:
File Dimensione Formato  
prod_390384-doc_134726.pdf

accesso aperto

Descrizione: Understanding Human Sleep Behaviour by Machine Learning
Tipologia: Versione Editoriale (PDF)
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/350031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact