DNA methylation is a well-studied genetic modification crucial to regulate the functioning of the genome. Its alterations play an important role in tumorigenesis and tumor-suppression. Thus, studying DNA methylation data may help biomarker discovery in cancer. Since public data on DNA methylation become abundant - and considering the high number of methylated sites (features) present in the genome - it is important to have a method for efficiently processing such large datasets. Relying on big data technologies, we propose BIGBIOCL an algorithm that can apply supervised classification methods to datasets with hundreds of thousands of features. It is designed for the extraction of alternative and equivalent classification models through iterative deletion of selected features.
Classification of Large DNA Methylation Datasets for Identifying Cancer Drivers
Cumbo Fabio;Weitschek Emanuel
2018
Abstract
DNA methylation is a well-studied genetic modification crucial to regulate the functioning of the genome. Its alterations play an important role in tumorigenesis and tumor-suppression. Thus, studying DNA methylation data may help biomarker discovery in cancer. Since public data on DNA methylation become abundant - and considering the high number of methylated sites (features) present in the genome - it is important to have a method for efficiently processing such large datasets. Relying on big data technologies, we propose BIGBIOCL an algorithm that can apply supervised classification methods to datasets with hundreds of thousands of features. It is designed for the extraction of alternative and equivalent classification models through iterative deletion of selected features.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.