Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of a system, it is fundamental to set a defined anisotropy to the system. Here, we investigate half-metallic La0.67Sr0.33MnO3 thin films by means of vectorial Magneto-Optical Kerr Magnetometry and found that they exhibit pure biaxial magnetic anisotropy at room temperature if grown onto a MgO (001) substrate with a thin SrTiO3 buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways and critical fields (coercivity and switching) discloses the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows fourfold symmetry at any temperature.

Room temperature biaxial magnetic anisotropy in La0.67Sr0.33MnO3thin films on SrTiO3buffered MgO (001) substrates for spintronic applications

Chaluvadi Sandeep Kumar;Orgiani Pasquale;Vinai Giovanni;Torelli Piero;
2018

Abstract

Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of a system, it is fundamental to set a defined anisotropy to the system. Here, we investigate half-metallic La0.67Sr0.33MnO3 thin films by means of vectorial Magneto-Optical Kerr Magnetometry and found that they exhibit pure biaxial magnetic anisotropy at room temperature if grown onto a MgO (001) substrate with a thin SrTiO3 buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways and critical fields (coercivity and switching) discloses the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows fourfold symmetry at any temperature.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Officina dei Materiali - IOM -
Ferromagnetism
Magnetic ordering
Phase transitions
Thin films
Magnetic materials
Spintronic devices
Kerr effects
Magnetic anisotropy
Superconductivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/350468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact