This review presents the recent state of the art concerning the multifunctional role of biohybrid membrane systems in neuronal tissue engineering as innovative in vitro platforms with a well-controlled microenvironment, that enhance nervous system repair by guiding neuronal growth and differentiation. In vitro membrane-based models of brain tissue, created by combining neurons, membranes and therapeutic molecules, were described highlighting the innovative approaches directed to investigate specific biological phenomena as well as for testing biopharmaceutical compounds in neurodegenerative diseases, and drug delivery to the CNS. Furthermore, several examples of in vivo application of membrane-based stem cell delivery approaches for nerve regeneration were summarized.

Current research in neural tissue-engineering is focused on the development of advanced biomaterials for the creation of sophisticated neuro-tissue analogues, showing that mimicking the in vivo tissue disposition and functions is a useful tool for the study of brain-related issues in normal and pathological states. In addition, the most common approach for developing new drug therapies is to carry out in vitro investigation before in vivo test, thus, it is increasingly important to develop valuable models that can predict the results of in vivo studies.

Biohybrid Membrane Systems for Testing Molecules and Stem Cell Therapy in Neuronal Tissue Engineering

Morelli Sabrina;Piscioneri Antonella;Salerno Simona;Drioli Enrico;De Bartolo Loredana
2017

Abstract

Current research in neural tissue-engineering is focused on the development of advanced biomaterials for the creation of sophisticated neuro-tissue analogues, showing that mimicking the in vivo tissue disposition and functions is a useful tool for the study of brain-related issues in normal and pathological states. In addition, the most common approach for developing new drug therapies is to carry out in vitro investigation before in vivo test, thus, it is increasingly important to develop valuable models that can predict the results of in vivo studies.
2017
This review presents the recent state of the art concerning the multifunctional role of biohybrid membrane systems in neuronal tissue engineering as innovative in vitro platforms with a well-controlled microenvironment, that enhance nervous system repair by guiding neuronal growth and differentiation. In vitro membrane-based models of brain tissue, created by combining neurons, membranes and therapeutic molecules, were described highlighting the innovative approaches directed to investigate specific biological phenomena as well as for testing biopharmaceutical compounds in neurodegenerative diseases, and drug delivery to the CNS. Furthermore, several examples of in vivo application of membrane-based stem cell delivery approaches for nerve regeneration were summarized.
Biomaterials
membranes
biohybrid membrane systems
neuronal regeneration
neuronal tissue engineering
in vitro brain models
drug therapy
stem cell therapy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/350821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact