We implement superconducting Yttrium barium copper oxide planar resonators with two fundamental modes for circuit quantum electrodynamics experiments. We first demonstrate good tunability in the resonant microwave frequencies and in their interplay, as emerges from the dependence of the transmission spectra on the device geometry. We then investigate the magnetic coupling of the resonant modes with bulk samples of 2,2-diphenyl-1-picrylhydrazyl organic radical spins. The transmission spectroscopy performed at low temperature shows that the coherent spin-photon coupling regime with the spin ensembles can be achieved by each of the resonator modes. The analysis of the results within the framework of the input-output formalism and by means of entropic measures demonstrates coherent mixing of the degrees of freedom corresponding to two remote spin ensembles and, with a suitable choice of the geometry, the approaching of a regime with spin-induced mixing of the two photon modes.

Microwave dual-mode resonators for coherent spin-photon coupling

Bonizzoni C;Troiani F;Ghirri A;Affronte M
2018

Abstract

We implement superconducting Yttrium barium copper oxide planar resonators with two fundamental modes for circuit quantum electrodynamics experiments. We first demonstrate good tunability in the resonant microwave frequencies and in their interplay, as emerges from the dependence of the transmission spectra on the device geometry. We then investigate the magnetic coupling of the resonant modes with bulk samples of 2,2-diphenyl-1-picrylhydrazyl organic radical spins. The transmission spectroscopy performed at low temperature shows that the coherent spin-photon coupling regime with the spin ensembles can be achieved by each of the resonator modes. The analysis of the results within the framework of the input-output formalism and by means of entropic measures demonstrates coherent mixing of the degrees of freedom corresponding to two remote spin ensembles and, with a suitable choice of the geometry, the approaching of a regime with spin-induced mixing of the two photon modes.
2018
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/353958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact