Lab-on-chips (LoCs) are microsystems capable of manipulating small amounts of fluids in microfluidic channels. They have a huge application potential, from basic science to chemical synthesis and point-of-care medical analysis. Polymers are rapidly emerging as the substrate of choice for LoC production, thanks to a low material cost and ease of processing. Two breakthroughs that could promote LoC diffusion are a microfabrication technology with cost-effective and rapid prototyping capabilities and also an integrated on-chip optical detection system. This chapter proposes the use of femtosecond laser micromachining combined with microinjection moulding as a novel highly-flexible microfabrication platform for polymeric LoCs with integrated optical detection, for the realization of low-cost and truly portable biophotonic microsystems. We demonstrate a LoC for the relevant application of non-invasive and contactless mechanical phenotyping of single cancer cells.

Plastic Lab-on-Chip for the Optical Manipulation of Single Cells

Rebeca Martínez Vázquez;Gianluca Trotta;Melania Paturzo;Sara Coppola;Antonio Ancona;Pietro Ferraro;Irene Fassi;Roberto Osellame
2019

Abstract

Lab-on-chips (LoCs) are microsystems capable of manipulating small amounts of fluids in microfluidic channels. They have a huge application potential, from basic science to chemical synthesis and point-of-care medical analysis. Polymers are rapidly emerging as the substrate of choice for LoC production, thanks to a low material cost and ease of processing. Two breakthroughs that could promote LoC diffusion are a microfabrication technology with cost-effective and rapid prototyping capabilities and also an integrated on-chip optical detection system. This chapter proposes the use of femtosecond laser micromachining combined with microinjection moulding as a novel highly-flexible microfabrication platform for polymeric LoCs with integrated optical detection, for the realization of low-cost and truly portable biophotonic microsystems. We demonstrate a LoC for the relevant application of non-invasive and contactless mechanical phenotyping of single cancer cells.
2019
Istituto di fotonica e nanotecnologie - IFN
978-3-319-94358-9
Factories of the future
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact