Upper-limb paresis is a main disabling condition in stroke and neurological diseases and rehabilitation is essential for recovering/maintaining function. Upper-limb weight support may help/enable these patients performing movements against gravity thus allowing for task oriented interventions. In this framework, an exoskeleton for upper-limb weight support was developed. In this preliminary study the system was tested in a small group of neurological patients (N=12) to verify the overall usability and its efficacy in assisting patients during functional movements against gravity. Patients performed some functional tasks of the ARAT test both with and without the exoskeleton. The system seems effective as it enabled even the most impaired patients performing the tasks. All patients could wear the exoskeleton and complete the tasks. Usability of the system was assessed as adequate for a use inside a clinical study. Future work will focus on verifying the efficacy of task-oriented intervention performed using the exoskeleton

Preliminary usability and efficacy tests in neurological patients of an exoskeleton for upper-limb weight support

Caimmi M;
2019

Abstract

Upper-limb paresis is a main disabling condition in stroke and neurological diseases and rehabilitation is essential for recovering/maintaining function. Upper-limb weight support may help/enable these patients performing movements against gravity thus allowing for task oriented interventions. In this framework, an exoskeleton for upper-limb weight support was developed. In this preliminary study the system was tested in a small group of neurological patients (N=12) to verify the overall usability and its efficacy in assisting patients during functional movements against gravity. Patients performed some functional tasks of the ARAT test both with and without the exoskeleton. The system seems effective as it enabled even the most impaired patients performing the tasks. All patients could wear the exoskeleton and complete the tasks. Usability of the system was assessed as adequate for a use inside a clinical study. Future work will focus on verifying the efficacy of task-oriented intervention performed using the exoskeleton
2019
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
exoskeleton
robotics for rehabilitation
neurological patients
upper-limb
neurological diseases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact