At the current pace of semiconductor technology development, transistor dimensions in advanced IC products will approach the range of a few tens of nanometers within the next decade. This presents a major challenge for our understanding of defects and diffusion in these tiny devices during processing. In response, an almost explosive growth in research on process physics has taken place at universities, national institutes and industry research labs worldwide. The central issue is the phenomenon of nonequilibrium diffusion driven by processing steps such as oxide growth, high concentration gradients of impurities, and annealing of damage caused by ion implantation. Nonequilibrium diffusion arises from perturbations to the natural thermal equilibrium concentrations of point defects - interstitial atoms and vacancies - in the silicon crystal. This paper gives a snapshot of our current understanding of the atomic-scale interactions between point defects and impurity atoms, extended defects and interfaces, as revealed by recent experimental and theoretical studies. The paper emphasizes the important role played by defect cluster ripening during transient enhanced diffusion and dopant activation.
Defects and diffusion in silicon: An overview
Mannino G;
1999
Abstract
At the current pace of semiconductor technology development, transistor dimensions in advanced IC products will approach the range of a few tens of nanometers within the next decade. This presents a major challenge for our understanding of defects and diffusion in these tiny devices during processing. In response, an almost explosive growth in research on process physics has taken place at universities, national institutes and industry research labs worldwide. The central issue is the phenomenon of nonequilibrium diffusion driven by processing steps such as oxide growth, high concentration gradients of impurities, and annealing of damage caused by ion implantation. Nonequilibrium diffusion arises from perturbations to the natural thermal equilibrium concentrations of point defects - interstitial atoms and vacancies - in the silicon crystal. This paper gives a snapshot of our current understanding of the atomic-scale interactions between point defects and impurity atoms, extended defects and interfaces, as revealed by recent experimental and theoretical studies. The paper emphasizes the important role played by defect cluster ripening during transient enhanced diffusion and dopant activation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.