The DNA polymorphism diffusely present in the introns of the members of the Eukaryotic beta-tubulin gene families, can be conveniently used to establish a DNA barcoding method, named tubulin-based polymorphism (TBP), that can reliably assign specific genomic fingerprintings to any plant or/and animal species. Similarly, many plant varieties can also be barcoded by TBP. The method is based on a simple cell biology concept that finds a conveniently exploitable molecular basis. It does not depend on DNA sequencing as the most classically established DNA barcode strategies. Successful applications, diversified for the different target sequences or experimental purposes, have been reported in many different plant species and, of late, a new a version applicable to animal species, including fishes, has been developed. Also, the TBP method is currently used for the genetic authentication of plant material and derived food products. Due to the use of a couple of universal primer pairs, specific for plant and animal organisms, respectively, it is effective in metabarcoding a complex matrix allowing an easy and rapid recognition of the different species present in a mixture. A simple, dedicated database made up by the genomic profile of reference materials is also part of the analytical procedure. Here we will provide some example of the TBP application and will discuss its features and uses in comparison with the DNA sequencing-based methods.
Tubulin-Based DNA Barcode: Principle and Applications to Complex Food Matrices
Morello L;Braglia L;Gavazzi F;Breviario D
2019
Abstract
The DNA polymorphism diffusely present in the introns of the members of the Eukaryotic beta-tubulin gene families, can be conveniently used to establish a DNA barcoding method, named tubulin-based polymorphism (TBP), that can reliably assign specific genomic fingerprintings to any plant or/and animal species. Similarly, many plant varieties can also be barcoded by TBP. The method is based on a simple cell biology concept that finds a conveniently exploitable molecular basis. It does not depend on DNA sequencing as the most classically established DNA barcode strategies. Successful applications, diversified for the different target sequences or experimental purposes, have been reported in many different plant species and, of late, a new a version applicable to animal species, including fishes, has been developed. Also, the TBP method is currently used for the genetic authentication of plant material and derived food products. Due to the use of a couple of universal primer pairs, specific for plant and animal organisms, respectively, it is effective in metabarcoding a complex matrix allowing an easy and rapid recognition of the different species present in a mixture. A simple, dedicated database made up by the genomic profile of reference materials is also part of the analytical procedure. Here we will provide some example of the TBP application and will discuss its features and uses in comparison with the DNA sequencing-based methods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.