[object Object]Two-dimensional transition metal dichalcogenides are gaining increasing interest due to their promising optical properties. In particular, molybdenum disulfide (MoS2) which displays a band-gap change from indirect at 1.29 eV for bulk materials to direct at 1.8 eV for the material monolayer. This particular effect can lead to a strong light interaction which can pave the way for a new approach to the next generation of visible light emitting devices. In this work we show the nanoscale variation of light emission properties by tip-enhanced photoluminescence microscopy and spectroscopy in the MoS2 monolayer, grown by chemical vapour deposition. The variations of the light emission properties are due to different effects depending on the shape of the MoS2 single layer, for instance, a different concentration of point defect in an irregularly shaped flake and the presence of a nanoscale terrace in a triangular monolayer. Simultaneously, atomic force microscopy reveals indeed the presence of a nanometric terrace, composed of an additional layer of MoS2, and tip-enhanced PL intensity imaging shows a localized intensity decrease.

Probing the nanoscale light emission properties of a CVD-grown MoS2 monolayer by tip-enhanced photoluminescence

Bosi Matteo;Fabbri Filippo;
2018

Abstract

[object Object]Two-dimensional transition metal dichalcogenides are gaining increasing interest due to their promising optical properties. In particular, molybdenum disulfide (MoS2) which displays a band-gap change from indirect at 1.29 eV for bulk materials to direct at 1.8 eV for the material monolayer. This particular effect can lead to a strong light interaction which can pave the way for a new approach to the next generation of visible light emitting devices. In this work we show the nanoscale variation of light emission properties by tip-enhanced photoluminescence microscopy and spectroscopy in the MoS2 monolayer, grown by chemical vapour deposition. The variations of the light emission properties are due to different effects depending on the shape of the MoS2 single layer, for instance, a different concentration of point defect in an irregularly shaped flake and the presence of a nanoscale terrace in a triangular monolayer. Simultaneously, atomic force microscopy reveals indeed the presence of a nanometric terrace, composed of an additional layer of MoS2, and tip-enhanced PL intensity imaging shows a localized intensity decrease.
2018
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
MoS2
2d materials
characterization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/356727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 42
social impact