This paper reports the main results of the RFX-mod fusion science activity since the last 2014 IAEA Fusion Energy Conference. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped Reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra low-q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effect in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to H-mode in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modelling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.

Overview of the RFX-Mod Fusion Science Activity

Zuin M;Marrelli L;Puiatti ME;Agostinetti P;Agostini M;Antoni V;M Barbisan;D Bonfiglio;M Brombin;S Cappello;L Carraro;M Dalla Palma;S Deambrosis;A De Lorenzi;E Gaio;M Gobbin;L Grando;P Innocente;A Luchetta;G Manduchi;G Marchiori;E Martines;S Martini;E Miorin;R Paccagnella;S Peruzzo;R Piovan;P Piovesan;I Predebon;M Recchia;P Scarin;M Spolaore;G Spizzo;C Taliercio;D Terranova;M Valisa;N Vianello;
2016

Abstract

This paper reports the main results of the RFX-mod fusion science activity since the last 2014 IAEA Fusion Energy Conference. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped Reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra low-q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effect in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to H-mode in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modelling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.
2016
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto gas ionizzati - IGI - Sede Padova
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact