Quantification is a supervised learning task that consists in predicting, given a set of classes C and a set D of unlabelled items, the prevalence (or relative frequency) p(c|D) of each class c in C. Quantification can in principle be solved by classifying all the unlabelled items and counting how many of them have been attributed to each class. However, this "classify and count" approach has been shown to yield suboptimal quantification accuracy; this has established quantification as a task of its own, and given rise to a number of methods specifically devised for it. We propose a recurrent neural network architecture for quantification (that we call QuaNet) that observes the classification predictions to learn higher-order "quantification embeddings", which are then refined by incorporating quantification predictions of simple classify-and-count-like methods. We test {QuaNet on sentiment quantification on text, showing that it substantially outperforms several state-of-the-art baselines.
A Recurrent Neural Network for Sentiment Quantification
Esuli A;Moreo Fernández A;Sebastiani F
2018
Abstract
Quantification is a supervised learning task that consists in predicting, given a set of classes C and a set D of unlabelled items, the prevalence (or relative frequency) p(c|D) of each class c in C. Quantification can in principle be solved by classifying all the unlabelled items and counting how many of them have been attributed to each class. However, this "classify and count" approach has been shown to yield suboptimal quantification accuracy; this has established quantification as a task of its own, and given rise to a number of methods specifically devised for it. We propose a recurrent neural network architecture for quantification (that we call QuaNet) that observes the classification predictions to learn higher-order "quantification embeddings", which are then refined by incorporating quantification predictions of simple classify-and-count-like methods. We test {QuaNet on sentiment quantification on text, showing that it substantially outperforms several state-of-the-art baselines.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_401251-doc_139415.pdf
accesso aperto
Descrizione: A Recurrent Neural Network for Sentiment Quantification
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


