The sustainable conversion of vegetable biomass-derived feeds to useful chemicals requires innovative routes meeting environmental and economical criteria. The approach herein pursued is the synthesis of water-tolerant, unconventional solid acid monolithic catalysts based on a mixed niobia-titania skeleton building up a hierarchical open-cell network of meso- and macropores, and tailored for use under continuous-flow conditions. The materials were characterized by spectroscopic, microscopy, and diffraction techniques, showing a reproducible isotropic structure and an increasing Lewis/Brønsted acid sites ratio with increasing Nb content. The catalytic dehydration reaction of xylose to furfural was investigated as a representative application. The efficiency of the catalyst was found to be dramatically affected by the niobia content in the titania lattice. The presence of as low as 2 wt % niobium resulted in the highest furfural yield at 140 °C under continuous-flow conditions, by using H2O/?-valerolactone as a safe monophasic solvent system. The interception of a transient 2,5-anhydroxylose species suggested the dehydration process occurs via a cyclic intermediates mechanism. The catalytic activity and the formation of the anhydro intermediate were related to the Lewis acid sites (LAS)/Brønsted acid sites (BAS) ratio and indicated a significant contribution of xylose-xylulose isomerization. No significant catalyst deactivation was observed over 4 days usage.

Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts

Barbaro P;Caporali S;Bossola F
2018

Abstract

The sustainable conversion of vegetable biomass-derived feeds to useful chemicals requires innovative routes meeting environmental and economical criteria. The approach herein pursued is the synthesis of water-tolerant, unconventional solid acid monolithic catalysts based on a mixed niobia-titania skeleton building up a hierarchical open-cell network of meso- and macropores, and tailored for use under continuous-flow conditions. The materials were characterized by spectroscopic, microscopy, and diffraction techniques, showing a reproducible isotropic structure and an increasing Lewis/Brønsted acid sites ratio with increasing Nb content. The catalytic dehydration reaction of xylose to furfural was investigated as a representative application. The efficiency of the catalyst was found to be dramatically affected by the niobia content in the titania lattice. The presence of as low as 2 wt % niobium resulted in the highest furfural yield at 140 °C under continuous-flow conditions, by using H2O/?-valerolactone as a safe monophasic solvent system. The interception of a transient 2,5-anhydroxylose species suggested the dehydration process occurs via a cyclic intermediates mechanism. The catalytic activity and the formation of the anhydro intermediate were related to the Lewis acid sites (LAS)/Brønsted acid sites (BAS) ratio and indicated a significant contribution of xylose-xylulose isomerization. No significant catalyst deactivation was observed over 4 days usage.
2018
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto dei Sistemi Complessi - ISC
biomass
niobia
titania
monolithic catalysts
File in questo prodotto:
File Dimensione Formato  
prod_394425-doc_164664.pdf

solo utenti autorizzati

Descrizione: Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania...
Tipologia: Versione Editoriale (PDF)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_394425-doc_184471.pdf

accesso aperto

Descrizione: Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania...(preprint)
Tipologia: Versione Editoriale (PDF)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/359900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact