Pulsed Thermography (PT) is one of the most common methods in Active Thermography procedures of the Thermography for NDT & E (Nondestructive Testing & Evaluation), due to the rapidity and convenience of this inspection technique. Flashes or lamps are often used to heat the samples in the traditional PT. This paper mainly explores exactly the opposite external stimulation in IR Thermography: cooling instead of heating. A steel sample with flat-bottom holes of different depths and sizes has been tested. Liquid nitrogen (LN2) is sprinkled on the surface of the specimen and the whole process is captured by a thermal camera. To obtain a good comparison, two other classic NDT techniques, Pulsed Thermography and Lock-In Thermography, are also employed. In particular, the Lock-in method is implemented with three different frequencies. In the image processing procedure, the Principal Component Thermography (PCT) method has been performed on all thermal images. For Lock-In results, both Phase and Amplitude images are generated by Fast Fourier Transform (FFT). Results show that all techniques presented part of the defects while the LN 2 technique displays the flaws only at the beginning of the test. Moreover, a binary threshold post-processing is applied to the thermal images, and by comparing these images to a binary map of the location of the defects, the corresponding Receiver Operating Characteristic (ROC) curves are established and discussed. A comparison of the results indicates that the better ROC curve is obtained using the Flash technique with PCT processing method.

Liquid Nitrogen Cooling in IR Thermography applied to steel specimen

Ferrarini G;Bortolin A;Cadelano G;Bison P
;
2017

Abstract

Pulsed Thermography (PT) is one of the most common methods in Active Thermography procedures of the Thermography for NDT & E (Nondestructive Testing & Evaluation), due to the rapidity and convenience of this inspection technique. Flashes or lamps are often used to heat the samples in the traditional PT. This paper mainly explores exactly the opposite external stimulation in IR Thermography: cooling instead of heating. A steel sample with flat-bottom holes of different depths and sizes has been tested. Liquid nitrogen (LN2) is sprinkled on the surface of the specimen and the whole process is captured by a thermal camera. To obtain a good comparison, two other classic NDT techniques, Pulsed Thermography and Lock-In Thermography, are also employed. In particular, the Lock-in method is implemented with three different frequencies. In the image processing procedure, the Principal Component Thermography (PCT) method has been performed on all thermal images. For Lock-In results, both Phase and Amplitude images are generated by Fast Fourier Transform (FFT). Results show that all techniques presented part of the defects while the LN 2 technique displays the flaws only at the beginning of the test. Moreover, a binary threshold post-processing is applied to the thermal images, and by comparing these images to a binary map of the location of the defects, the corresponding Receiver Operating Characteristic (ROC) curves are established and discussed. A comparison of the results indicates that the better ROC curve is obtained using the Flash technique with PCT processing method.
2017
Istituto per le Tecnologie della Costruzione - ITC - Sede Secondaria Padova
978-1-5106-0930-3
Infrared Thermography
NDT & E
Liquid Nitrogen cooling
ROC curve
historic buildings
File in questo prodotto:
File Dimensione Formato  
Thermosense2017_Lei.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/361421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact