The P2X7 receptor, a member of the ionotropic purinergic P2X family of extracellular ATP-gated receptors, exerts strong trophic effects when tonically activated in cells, in addition to cytotoxic effects after a sustained activation. Because of its widespread distribution, P2X7 regulates several cell- and tissue-specific physiological functions, and is involved in a number of disease conditions. A novel role has recently emerged for P2X7 in the regulation of glucose and energy metabolism. In previous work, we have demonstrated that genetic depletion, and to a lesser extent also pharmacological inhibition of P2X7, elicits a significant decrease of the whole body energy expenditure and an increase of the respiratory exchange ratio. In the present work, we have investigated the effects of P2X7 stimulation in vivo on the whole body energy metabolism. Adult mice were daily injected with the specific P2X7 agonist 2'(3')-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate for 1 week and subjected to indirect calorimetric analysis for 48 h. We report that 2'(3')-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate increases metabolic rate and O-2 consumption, concomitantly decreasing respiratory rate and upregulating NADPH oxidase 2 in gastrocnemius and tibialis anterior muscles. Our results indicate a major impact on energy homeostasis and muscle metabolism by activation of P2X7.

Stimulation of P2X7 Enhances Whole Body Energy Metabolism in Mice

Giacovazzo, Giacomo;Fabbrizio, Paola;Apolloni, Savina;Coccurello, Roberto;Volonte, Cinzia
2019

Abstract

The P2X7 receptor, a member of the ionotropic purinergic P2X family of extracellular ATP-gated receptors, exerts strong trophic effects when tonically activated in cells, in addition to cytotoxic effects after a sustained activation. Because of its widespread distribution, P2X7 regulates several cell- and tissue-specific physiological functions, and is involved in a number of disease conditions. A novel role has recently emerged for P2X7 in the regulation of glucose and energy metabolism. In previous work, we have demonstrated that genetic depletion, and to a lesser extent also pharmacological inhibition of P2X7, elicits a significant decrease of the whole body energy expenditure and an increase of the respiratory exchange ratio. In the present work, we have investigated the effects of P2X7 stimulation in vivo on the whole body energy metabolism. Adult mice were daily injected with the specific P2X7 agonist 2'(3')-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate for 1 week and subjected to indirect calorimetric analysis for 48 h. We report that 2'(3')-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate increases metabolic rate and O-2 consumption, concomitantly decreasing respiratory rate and upregulating NADPH oxidase 2 in gastrocnemius and tibialis anterior muscles. Our results indicate a major impact on energy homeostasis and muscle metabolism by activation of P2X7.
2019
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Istituto dei Sistemi Complessi - ISC
P2X7 receptor
BzATP
energy expenditure
oxygen consumption
fatty acid oxidation
File in questo prodotto:
File Dimensione Formato  
prod_406873-doc_142419.pdf

accesso aperto

Descrizione: Stimulation of P2X7 Enhances Whole Body Energy Metabolism in Mice
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/361833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact