integral(Omega) Mf (x)(p(x)) dx <= c(1) integral(Omega) vertical bar f (x)vertical bar(q(x)) dx + c(2),

A now classical result in the theory of variable Lebesgue spaces due to Lerner (2005) is that a modular inequality for the Hardy Littlewood maximal function in L-p(.) (R-n) holds if and only if the exponent is constant. We generalize this result and give a new and simpler proof. We then find necessary and sufficient conditions for the validity of the weaker modular inequality

Modular inequalities for the maximal operator in variable Lebesgue spaces

Fiorenza Alberto
2018

Abstract

A now classical result in the theory of variable Lebesgue spaces due to Lerner (2005) is that a modular inequality for the Hardy Littlewood maximal function in L-p(.) (R-n) holds if and only if the exponent is constant. We generalize this result and give a new and simpler proof. We then find necessary and sufficient conditions for the validity of the weaker modular inequality
2018
integral(Omega) Mf (x)(p(x)) dx <= c(1) integral(Omega) vertical bar f (x)vertical bar(q(x)) dx + c(2),
Maximal function
Variable Lebesgue space
Modular inequalities
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/364259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact