In this article, we give a boundedness criterion for Cauchy singular integral operators in generalized weighted grand Lebesgue spaces. We establish a necessary and sufficient condition for the couple of weights and curves ensuring boundedness of integral operators generated by the Cauchy singular integral defined on a rectifiable curve. We characterize both weak and strong type weighted inequalities. Similar problems for Calderon-Zygmund singular integrals defined on measured quasimetric space and for maximal functions defined on curves are treated. Finally, as an application, we establish existence and uniqueness, and we exhibit the explicit solution to a boundary value problem for analytic functions in the class of Cauchy-type integrals with densities in weighted grand Lebesgue spaces.
NONLINEAR HARMONIC ANALYSIS OF INTEGRAL OPERATORS IN WEIGHTED GRAND LEBESGUE SPACES AND APPLICATIONS
Fiorenza Alberto;
2018
Abstract
In this article, we give a boundedness criterion for Cauchy singular integral operators in generalized weighted grand Lebesgue spaces. We establish a necessary and sufficient condition for the couple of weights and curves ensuring boundedness of integral operators generated by the Cauchy singular integral defined on a rectifiable curve. We characterize both weak and strong type weighted inequalities. Similar problems for Calderon-Zygmund singular integrals defined on measured quasimetric space and for maximal functions defined on curves are treated. Finally, as an application, we establish existence and uniqueness, and we exhibit the explicit solution to a boundary value problem for analytic functions in the class of Cauchy-type integrals with densities in weighted grand Lebesgue spaces.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.