Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any a priori knowledge. Within space missions, above all those involving rovers that have to explore planetary surfaces, vision can play a key role in the improvement of autonomous navigation functionalities: besides obstacle avoidance and hazard detection along the traveling, vision can in fact provide accurate motion estimation in order to constantly monitor all paths executed by the rover. The present work basically regards the development of an effective visual odometry system, focusing as much as possible on issues such as continuous operating mode, system speed and reliability.
A Study on Planetary Visual Odometry Optimization: Time Constraints and Reliability
E Zereik;
2011
Abstract
Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any a priori knowledge. Within space missions, above all those involving rovers that have to explore planetary surfaces, vision can play a key role in the improvement of autonomous navigation functionalities: besides obstacle avoidance and hazard detection along the traveling, vision can in fact provide accurate motion estimation in order to constantly monitor all paths executed by the rover. The present work basically regards the development of an effective visual odometry system, focusing as much as possible on issues such as continuous operating mode, system speed and reliability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.