The effects of a number of inorganic anions (F(-), HCO(3) (-), B(OH) (4) (-) , Cl(-), I(-)) and of the siderophore DFO-B on the release of As from volcanic rocks were investigated in batch experiments. While previously reported field and laboratory data support a role of inorganic anions on As mobilization into aquifers, the role of siderophores on As-induced mobilization was less investigated. Fluoride, bicarbonate and DFO-B have shown a significant influence on the release of As from the rocks. Lava was mostly affected among the investigated rocks at pH 6 and 20 degrees C by releasing 4% of its initial As content in the presence of 0.01 M F(-)and 10% in the presence of 500 µM DFO-B. The effect of fluoride was larger at pH 6 than at pH 8.5 for all the rocks. In the case of DFO-B, there was also a larger effect at pH 6 compared to pH 8 for the various rocks except tuff. Bicarbonate played a role under alkaline conditions while its effect was negligible at pH 6. Anion exchange processes in the presence of fluoride and bicarbonate and complexation processes in the presence of the siderophore DFO-B appear to be the major processes responsible for the release of arsenic from the rocks. The siderophore DFO-B plays mainly an indirect role on the As release by complexing Al, Fe and Mn, thus favoring the dissolution of the rocks and the consequent release of As bound to surface Al, Fe and Mn oxy-hydroxides. These findings suggest that ionic interactions with fluoride, bicarbonate and siderophore may be a further triggering factor in the mobilization of As from aquifer rocks.

RELEASE OF ARSENIC FROM VOLCANIC ROCKS TRHOUGH INTERACTION WITH INORGANIC ANIONS AND ORGANIC LIGANDS

CASENTINI B;PETTINE M;
2010

Abstract

The effects of a number of inorganic anions (F(-), HCO(3) (-), B(OH) (4) (-) , Cl(-), I(-)) and of the siderophore DFO-B on the release of As from volcanic rocks were investigated in batch experiments. While previously reported field and laboratory data support a role of inorganic anions on As mobilization into aquifers, the role of siderophores on As-induced mobilization was less investigated. Fluoride, bicarbonate and DFO-B have shown a significant influence on the release of As from the rocks. Lava was mostly affected among the investigated rocks at pH 6 and 20 degrees C by releasing 4% of its initial As content in the presence of 0.01 M F(-)and 10% in the presence of 500 µM DFO-B. The effect of fluoride was larger at pH 6 than at pH 8.5 for all the rocks. In the case of DFO-B, there was also a larger effect at pH 6 compared to pH 8 for the various rocks except tuff. Bicarbonate played a role under alkaline conditions while its effect was negligible at pH 6. Anion exchange processes in the presence of fluoride and bicarbonate and complexation processes in the presence of the siderophore DFO-B appear to be the major processes responsible for the release of arsenic from the rocks. The siderophore DFO-B plays mainly an indirect role on the As release by complexing Al, Fe and Mn, thus favoring the dissolution of the rocks and the consequent release of As bound to surface Al, Fe and Mn oxy-hydroxides. These findings suggest that ionic interactions with fluoride, bicarbonate and siderophore may be a further triggering factor in the mobilization of As from aquifer rocks.
2010
Istituto di Ricerca Sulle Acque - IRSA
Arsenic mobilization
Groundwater
Inorganic anions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/36533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact