The southern Tyrrhenian continental margin is the product of Pliocene-Recent back-arc extension. An area of approximately 30 km of gentle (about 1.5°) lower slope of the last glacial outer shelf sedimentary wedge in water depths of between 200 and 300 m failed between 14 and 11 ka BP. We approached the landslide by multibeam and sub-bottom profiler surveying, high-resolution multichannel seismics, and coring for stratigraphic and geotechnical purposes. With regard to a slope-stability analysis, we carried out an assessment of the stratigraphic and structural setting of the area of the Licosa landslide. This analysis revealed that the landslide detached along a marker bed that was composed of the tephra layer Y-5 (c. 39 ka). Several previously unknown geological characteristics of the area are likely to have affected the slope stability. These are the basal erosion of the slope in the Licosa Channel, a high sedimentation rate in the sedimentary wedge, earthquake shaking, the volcanic ash nature of the detachment surface, subsurface gas/fluid migration, and lateral porewater flow from the depocentre of wedge to the base of the slope along the high-permeability ash layers. A newly discovered prominent structural discontinuity is identified as the fault whose activity may have triggered the landslide.
Open-slope, translational submarine landslide in a tectonically active volcanic continental margin (Licosa submarine landslide, southern tyrrhenian sea)
Budillon F;Insinga DD;Conforti A;Iorio M;Tonielli R
2019
Abstract
The southern Tyrrhenian continental margin is the product of Pliocene-Recent back-arc extension. An area of approximately 30 km of gentle (about 1.5°) lower slope of the last glacial outer shelf sedimentary wedge in water depths of between 200 and 300 m failed between 14 and 11 ka BP. We approached the landslide by multibeam and sub-bottom profiler surveying, high-resolution multichannel seismics, and coring for stratigraphic and geotechnical purposes. With regard to a slope-stability analysis, we carried out an assessment of the stratigraphic and structural setting of the area of the Licosa landslide. This analysis revealed that the landslide detached along a marker bed that was composed of the tephra layer Y-5 (c. 39 ka). Several previously unknown geological characteristics of the area are likely to have affected the slope stability. These are the basal erosion of the slope in the Licosa Channel, a high sedimentation rate in the sedimentary wedge, earthquake shaking, the volcanic ash nature of the detachment surface, subsurface gas/fluid migration, and lateral porewater flow from the depocentre of wedge to the base of the slope along the high-permeability ash layers. A newly discovered prominent structural discontinuity is identified as the fault whose activity may have triggered the landslide.File | Dimensione | Formato | |
---|---|---|---|
prod_411982-doc_165951.pdf
accesso aperto
Descrizione: Open-slope, translational submarine landslide in a tectonically active volcanic continental margin...
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
12.91 MB
Formato
Adobe PDF
|
12.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.