The paper gives a simple derivation of the relaxed energy Wqc for the quadratic double-well material with equal elastic moduli and analyzes Wqc in the transversely isotropic case. We observe that the energy W is a sum of a degenerate quadratic quasiconvex function and a function that depends on the strain only through a scalar variable. For such a W, the relaxation reduces to a one-dimensional convexification. Wqc depends on a constant g defined by a three-dimensional maximum problem. It is shown that in the transversely isotropic case the problem reduces to a maximization of a fraction of two quadratic polynomials over [0,1]. The maximization reveals several regimes and explicit formulas are given in the case of a transversely isotropic, positive definite displacement of the wells.

Relaxed energy for transversely isotropic two-phase materials

Padovani C;
2002

Abstract

The paper gives a simple derivation of the relaxed energy Wqc for the quadratic double-well material with equal elastic moduli and analyzes Wqc in the transversely isotropic case. We observe that the energy W is a sum of a degenerate quadratic quasiconvex function and a function that depends on the strain only through a scalar variable. For such a W, the relaxation reduces to a one-dimensional convexification. Wqc depends on a constant g defined by a three-dimensional maximum problem. It is shown that in the transversely isotropic case the problem reduces to a maximization of a fraction of two quadratic polynomials over [0,1]. The maximization reveals several regimes and explicit formulas are given in the case of a transversely isotropic, positive definite displacement of the wells.
2002
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Double-well material
Transverse isotropy
Quasiconvexity
File in questo prodotto:
File Dimensione Formato  
prod_43678-doc_122633.pdf

solo utenti autorizzati

Descrizione: Relaxed energy for transversely isotropic two-phase materials
Tipologia: Versione Editoriale (PDF)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/36546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact