In this paper we analyze an isothermal and isotropic model for viscoelastic media combining linearized perfect plasticity (allowing for concentration of plastic strain and development of shear bands) and damage effects in a dynamic setting. The interplay between the viscoelastic rheology with inertia, elasto-plasticity, and unidirectional rate-dependent incomplete damage affecting both the elastic and viscous response, as well as the plastic yield stress, is rigorously characterized by showing existence of weak solutions to the constitutive and balance equations of the model. The analysis relies on the notions of plastic-strain measures and bounded-deformation displacements, on sophisticated time-regularity estimates to establish a duality between acceleration and velocity of the elastic displacement, on the theory of rate-independent processes for the energy conservation in the dynamical-plastic part, and on the proof of the strong convergence of the elastic strains. Existence of suitably defined weak solutions (even conserving energy) is proved rather constructively by using a staggered two-step time discretization scheme.
Dynamic perfect plasticity and damage in viscoelastic solids
U Stefanelli
2019
Abstract
In this paper we analyze an isothermal and isotropic model for viscoelastic media combining linearized perfect plasticity (allowing for concentration of plastic strain and development of shear bands) and damage effects in a dynamic setting. The interplay between the viscoelastic rheology with inertia, elasto-plasticity, and unidirectional rate-dependent incomplete damage affecting both the elastic and viscous response, as well as the plastic yield stress, is rigorously characterized by showing existence of weak solutions to the constitutive and balance equations of the model. The analysis relies on the notions of plastic-strain measures and bounded-deformation displacements, on sophisticated time-regularity estimates to establish a duality between acceleration and velocity of the elastic displacement, on the theory of rate-independent processes for the energy conservation in the dynamical-plastic part, and on the proof of the strong convergence of the elastic strains. Existence of suitably defined weak solutions (even conserving energy) is proved rather constructively by using a staggered two-step time discretization scheme.File | Dimensione | Formato | |
---|---|---|---|
prod_407036-doc_152477.pdf
accesso aperto
Descrizione: Dynamic perfect plasticity and damage in viscoelastic solids
Tipologia:
Versione Editoriale (PDF)
Dimensione
273.21 kB
Formato
Adobe PDF
|
273.21 kB | Adobe PDF | Visualizza/Apri |
prod_407036-doc_152478.pdf
non disponibili
Descrizione: Dynamic perfect plasticity and damage in viscoelastic solids
Tipologia:
Versione Editoriale (PDF)
Dimensione
445.11 kB
Formato
Adobe PDF
|
445.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.