Convolutional neural networks have reached extremely high performances on the Face Recognition task. These models are commonly trained by using high-resolution images and for this reason, their discrimination ability is usually degraded when they are tested against low-resolution images. Thus, Low-Resolution Face Recognition remains an open challenge for deep learning models. Such a scenario is of particular interest for surveillance systems in which it usually happens that a low-resolution probe has to be matched with higher resolution galleries. This task can be especially hard to accomplish since the probe can have resolutions as low as 8, 16 and 24 pixels per side while the typical input of state-of-the-art neural network is 224. In this paper, we described the training campaign we used to fine-tune a ResNet-50 architecture, with Squeeze-and-Excitation blocks, on the tasks of very low and mixed resolutions face recognition. For the training process we used the VGGFace2 dataset and then we tested the performance of the final model on the IJB-B dataset; in particular, we tested the neural network on the 1:1 verification task. In our experiments we considered two different scenarios: (1) probe and gallery with same resolution; (2) probe and gallery with mixed resolutions. Experimental results show that with our approach it is possible to improve upon state-of-the-art models performance on the low and mixed resolution face recognition tasks with a negligible loss at very high resolutions.
Improving Multi-scale Face Recognition Using VGGFace2
Massoli FV;Amato G;Falchi F;Gennaro C;Vairo C
2019
Abstract
Convolutional neural networks have reached extremely high performances on the Face Recognition task. These models are commonly trained by using high-resolution images and for this reason, their discrimination ability is usually degraded when they are tested against low-resolution images. Thus, Low-Resolution Face Recognition remains an open challenge for deep learning models. Such a scenario is of particular interest for surveillance systems in which it usually happens that a low-resolution probe has to be matched with higher resolution galleries. This task can be especially hard to accomplish since the probe can have resolutions as low as 8, 16 and 24 pixels per side while the typical input of state-of-the-art neural network is 224. In this paper, we described the training campaign we used to fine-tune a ResNet-50 architecture, with Squeeze-and-Excitation blocks, on the tasks of very low and mixed resolutions face recognition. For the training process we used the VGGFace2 dataset and then we tested the performance of the final model on the IJB-B dataset; in particular, we tested the neural network on the 1:1 verification task. In our experiments we considered two different scenarios: (1) probe and gallery with same resolution; (2) probe and gallery with mixed resolutions. Experimental results show that with our approach it is possible to improve upon state-of-the-art models performance on the low and mixed resolution face recognition tasks with a negligible loss at very high resolutions.File | Dimensione | Formato | |
---|---|---|---|
prod_411375-doc_144849.pdf
accesso aperto
Descrizione: post-print
Tipologia:
Documento in Post-print
Licenza:
Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
prod_411375-doc_164170.pdf
solo utenti autorizzati
Descrizione: Improving Multi-scale Face Recognition Using VGGFace2
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.